Электрохимическая защита кузова автомобиля от коррозии — Автомастер

Содержание

Электрохимическая защита кузова автомобиля от коррозии

Электрохимическая защита конструкций из металла от коррозионных проявлений базируется на наложении на предохраняемое изделие отрицательного потенциала. Высокий уровень эффективности она демонстрирует в тех случаях, когда металлоконструкции подвергаются активному электрохимическому разрушению.

Любая конструкция из металла с течением времени начинает разрушаться в результате коррозионного воздействия.

По этой причине металлические поверхности перед эксплуатацией в обязательном порядке покрывают специальными составами, состоящими из различных неорганических и органических элементов.

Такие материалы в течение определенного периода надежно предохраняют металл от окисления (ржавления). Но через некоторое время их необходимо обновлять (наносить новые составы).

Электрохимическая защита кузова автомобиля от коррозии

Тогда, когда защитный слой не удается возобновить, защита от коррозии трубопроводов, кузова автомобиля и других конструкций выполняется при помощи электрохимической методики.

Она незаменима для предохранения от ржавления резервуаров и емкостей, работающих под землей, днищ морских кораблей, разнообразных подземных коммуникаций, когда потенциал коррозии (ее называют свободной) находится в зоне перепассивации основного металла изделия или активного его растворения.

Суть электрохимической защиты заключается в том, что к конструкции из металла подключают извне постоянный электроток, который формирует на поверхности металлоконструкции поляризацию катодного типа электродов микрогальванопар.

В итоге на металлической поверхности наблюдается преобразование анодных областей в катодные. После такого превращения негативное влияние среды воспринимает анод, а не сам материал, из которого изготовлено защищаемое изделие.

Электрохимическая защита кузова автомобиля от коррозии

Электрохимическая защита может быть либо катодной, либо анодной. При катодной потенциал металла смещается в отрицательную сторону, при анодной – в положительную.

Механизм процесса, если разобраться в нем, достаточно прост.

Погруженный в электролитический раствор металл является системой с большим количеством электронов, которая включает в себя разделенные в пространстве катодные и анодные зоны, электрически замкнутые друг с другом.

Подобное положение вещей обусловлено гетерогенной электрохимической структурой металлических изделий (например, подземных трубопроводов). Коррозионные проявления образуются на анодных областях металла из-за его ионизации.

Электрохимическая защита кузова автомобиля от коррозии

При присоединении материала с большим потенциалом (отрицательным) к основному металлу, находящемуся в электролите, наблюдается образование общего катода за счет процесса поляризации катодных и анодных зон.

Под большим потенциалом при этом понимают такую его величину, которая превосходит потенциал анодной реакции.

В сформированной гальванопаре материал с малым потенциалом электрода растворяется, что приводит к приостановке коррозии (так как ионы предохраняемого металлического изделия не могут попадать в раствор).

Требуемый для защиты кузова автомобиля, подземных резервуаров и трубопроводов, днищ кораблей электрический ток может поступать от внешнего источника, а не только от функционирования микрогальванической пары. В подобной ситуации предохраняемая конструкция подключается к “минусу” источника электротока. Анод же, сделанный из материалов с малой степенью растворимости, подсоединяют к “плюсу” системы.

Электрохимическая защита кузова автомобиля от коррозии

Если ток получают только от гальванопар, говорят о процессе с расходуемыми анодами.

А при использовании тока от внешнего источника речь идет уже о защите трубопроводов, деталей транспортных и водных средств при помощи наложенного тока.

Применение любой из этих схем обеспечивает качественную защиту объекта от общего коррозионного распада и от ряда особых его вариантов (селективная, питтинговая, растрескивающая, межкристаллитная, контактная виды коррозии).

Данная электрохимическая методика предохранения металлов от коррозии применяется для конструкций из:

  • углеродистых сталей;
  • пассивирующихся разнородных материалов;
  • высоколегированных и нержавеющих сталей;
  • титановых сплавов.

Анодная схема предполагает смещение потенциала предохраняемой стали в положительную сторону. Причем этот процесс ведется до тех пор, пока система не входит в устойчиво пассивное состояние. Такая защита от коррозии возможна в средах, хорошо проводящих электрический ток. Преимущество анодной методики состоит в том, что она существенно замедляет скорость окисления защищаемых поверхностей.

Электрохимическая защита кузова автомобиля от коррозии

Кроме того, подобная защита может осуществляться посредством насыщения специальными компонентами-окислителями (нитраты, бихроматы и другие) коррозионной среды.

В этом случае ее механизм примерно идентичен традиционному методу анодной поляризации металлов.

Окислители значительно увеличивают на поверхности стали эффект от катодного процесса, но они обычно негативно влияют на окружающую среду, выбрасывая в нее агрессивные элементы.

Анодная защита используется реже, чем катодная, так как к предохраняемому объекту выдвигается множество специфических требований (например, безупречное качество сварных швов трубопроводов или кузова автомобиля, постоянное нахождение электродов в растворе и пр.). Катоды при анодной технологии располагают по строго определенной схеме, которая принимает во внимание все особенности металлоконструкции.

Электрохимическая защита кузова автомобиля от коррозии

Для анодной методики используются малорастворимые элементы (из них делают катоды) – платину, никель, нержавеющие высоколегированные сплавы, свинец, тантал. Сама же установка для такой защиты от коррозии состоит из следующих компонентов:

  • защищаемая конструкция;
  • источник тока;
  • катод;
  • специальный электрод сравнения.

Допускается применять анодную защиту для емкостей, где хранятся минеральные удобрения, аммиачные составы, серная кислота, для цилиндрических установок и теплообменников, эксплуатируемых на химических предприятиях, для резервуаров, в которых выполняют химическое никелирование.

Достаточно часто применяемым вариантом катодной защиты является технология использования специальных материалов-протекторов. При подобной методике электроотрицательный металл подсоединяется к конструкции.

На протяжении заданного временного промежутка коррозия воздействует именно на протектор, а не на предохраняемый объект.

После того, как протектор разрушается до определенного уровня, вместо него ставят нового “защитника”.

Протекторная электрохимическая защита рекомендована для обработки объектов, находящихся в грунте, воздухе, воде (то есть в нейтральных с точки зрения химии средах). При этом эффективной она будет лишь тогда, когда между средой и материалом-протектором имеется некоторое переходное сопротивление (его величина варьируется, но в любом случае является небольшой).

Электрохимическая защита кузова автомобиля от коррозии

На практике протекторы используют при экономической нецелесообразности либо физической невозможности подвести требуемый заряд электрического тока к объекту из стали или металла.

Стоит отдельно отметить тот факт, что защитные материалы характеризуются определенным радиусом, на который распространяется их положительное действие.

По этой причине следует правильно высчитывать дистанцию для удаления их от металлоконструкции.

Электрохимическая защита кузова автомобиля от коррозии

  • Магниевые. Применяются в средах с рН 9,5–10,5 единиц (земля, пресная и малосоленая вода). Производятся из сплавов на основе магния с дополнительным легированием алюминием (не более 6–7 %) и цинком (до 5 %). Для экологии такие протекторы, защищающие объекты от коррозии, потенциально небезопасны из-за того, что они могут стать причиной растрескивания и водородного охрупчивания металлических изделий.
  • Цинковые. Данные “защитники” незаменимы для конструкций, функционирующих в воде с большим содержанием соли. В других средах применять их нет смысла, так как на их поверхности появляются гидроксиды и оксиды в виде толстой пленки. В составе протекторов на базе цинка имеются незначительные (до 0,5 %) добавки железа, свинца, кадмия, алюминия и некоторых других химических элементов.
  • Алюминиевые. Их используют в морской проточной воде и на объектах, находящихся на прибрежном шельфе. В алюминиевых протекторах имеется магний (около 5 %) и цинк (около 8%), а также в очень малых количествах таллий, кадмий, кремний, индий.
  • Кроме того, иногда применяются железные протекторы, которые производят из железа без каких-либо добавок либо из обычных углеродистых сталей.

Температурные перепады и ультрафиолетовые лучи наносят серьезный вред всем внешним узлам и составным частям транспортных средств. Защита кузова автомобиля и некоторых других его элементов от коррозии электрохимическими методами признается весьма эффективным способом продления идеального внешнего вида машины.

Принцип действия такой защиты ничем не отличается от схемы, описанной выше. При предохранении от ржавления кузова автомобиля функцию анода может выполнить почти любая поверхность, которая способна качественно проводить электроток (влажное покрытие автодороги, металлические пластины, сооружения из стали). Катодом при этом является непосредственно корпус транспортного средства.

Электрохимическая защита кузова автомобиля от коррозии

Элементарные способы электрохимической защиты кузова автомобиля:

  1. Подключаем через монтажный провод и дополнительный резистор к плюсу АКБ корпус гаража, в котором стоит машина. Данная защита от коррозии кузова автомобиля особенно продуктивна в летний период, когда в автогараже присутствует парниковый эффект. Этот эффект как раз и предохраняет наружные части авто от окисления.
  2. Монтируем специальный заземляющий металлизированный “хвост” из резины в задней части транспортного средства так, чтобы на него во время движения в дождливую погоду попадали капли влаги. При высокой влажности между автотрассой и кузовом автомобиля образуется разность потенциалов, которая и предохраняет наружные части ТС от окисления.

Электрохимическая защита кузова автомобиля от коррозии

Также защита кузова автомобиля осуществляется при помощи протекторов. Их крепят на порогах машины, на днище, под крыльями. Протекторами в данном случае являются небольшие пластинки из платины, магнетита, карбоксила, графита (неразрушающиеся с течением времени аноды), а также из алюминия и “нержавейки” (их следует менять каждый несколько лет).

Системы труб в настоящее время защищаются посредством дренажной и катодной электрохимической методики. При предохранении трубопроводов от коррозии по катодной схеме используются:

  • Внешние источники тока. Их плюс подключат к анодному заземлению, а минус – к самой трубе.
  • Аноды-защитники, использующие ток от гальванических пар.

Катодная методика предполагает поляризацию предохраняемой стальной поверхности. При этом осуществляется подключение подземных трубопроводов к “минусу” комплекса катодной защиты (по сути, он представляет собой источник тока).

Вам будет интересно  Что делать если на кузове автомобиля начала появляться ржавчина

“Плюс” подключают к добавочному внешнему электроду при помощи специального кабеля, который изготавливается из проводящей резины или графита.

Данная схема позволяет получать электроцепь замкнутого типа, включающую в себя следующие компоненты:

  • электрод (наружный);
  • электролит, находящийся в почве, где выполнена прокладка трубопроводов;
  • непосредственно трубы;
  • кабель (катодный);
  • источник тока;
  • кабель (анодный).

Для протекторной защиты трубопроводов применяют материалы на основе алюминий, магния и цинка, коэффициент полезного действия которых равняется 90 % при использовании протекторов на базе алюминия и цинка и 50 % для протекторов из магниевых сплавов и чистого магния.

Для дренажной защиты систем труб применяется технология отвода в грунт блуждающих токов. Существует четыре варианта дренажной антикоррозионной защиты трубопроводов – поляризованный, земляной, усиленный и прямой.

При прямом и поляризованном дренаже между “минусом” блуждающих токов и трубой ставят перемычки. Для земляной защитной схемы необходимо произвести посредством добавочных электродов заземление.

А при усиленном дренаже трубных систем в цепь добавляют преобразователь, который необходим для повышения величины дренажного тока.

Катодная защита автомобиля от коррозии

Главной болезнью любого автомобиля является коррозия. На советских машинах признаки её появления проявляются раньше, на европейских — немного позже, а модели японского автопрома считаются наиболее защищёнными. Но все они рано или поздно начинают покрываться рыжими коррозийными пятнами.

Устранение таких дефектов становится дорогостоящей проблемой, на которую некоторые автовладельцы просто закрывают глаза. А выбором других становится катодная защита от коррозии. Эта тема интересна для каждого водителя, который желает сохранить как можно дольше первоначальный внешний вид авто.

Электрохимическая защита кузова автомобиля от коррозии

Как действует защита

Способ защиты, который лёг в основу этой статьи, является активным методом, основанным на электрохимических законах. Изначально таким образом защищали трубопроводы и различного рода конструкции из металла. Со временем катодная защита металлов от коррозии перекочевала и в автомобильную сферу.

В основе лежат особенности протекания реакций окислительно-восстановительного характера. Для организации защиты на металлический объект накладывается отрицательно заряженный заряд.

Также необходимо присутствие сдвига потенциала, который может быть создан двумя способами: использованием внешнего тока или соединением с протекторным анодом, конструкция которого состоит из металла с более высоким уровнем электроотрицательности по сравнению с автомобилем.

Принцип работы катодной защиты основан на слабом токе, который проходит через влажный воздух от автомобиля к окружающим предметам.

В результате кузов с низкой электроотрицательностью восстанавливается за счёт окисления металла с высокой электроотрицательностью.

Теперь становится понятно, почему пластины для защиты носят название жертвенных анодов — сами разрушаются, зато автомобиль восстанавливается.

Электрохимическая защита кузова автомобиля от коррозии

Подобная защита автомобиля от коррозии требует осторожного подхода, тщательного изучения теории и точного соблюдения правил её организации. Стоит создать слишком большой сдвиг потенциала и результат будет полностью противоположным. Начнёт выделяться водород, состав электродного слоя изменится, покрытие автомобиля подвергнется деградации и на нём появятся следы стресс-коррозии.

Составные элементы катодной защиты

Есть обязательные составляющие, без которых защита просто не будет функционировать.

Катод и анод

Катодом в нашей схеме защиты является сам автомобиль, он будет служить минусом. Анодом может быть любая металлическая конструкция, пластина и любая поверхность, которая способна проводить электрический ток, даже мокрый асфальт. Без этих двух составляющих электрохимическая защита автомобиля от коррозии просто не будет функционировать.

От некоторых специалистов можно услышать про разность потенциалов и степень защиты, которая определяется этим показателем. Железо будет защищено от коррозии при величине потенциалов в пределах 0,1–0,2 В.

На самом деле расстояние, которое находится между анодом и катодом, может достигать нескольких сантиметров и даже метров. Чем больше расстояние между электродами, тем большей должен быть показатель разницы потенциалов.

Да и воздух не будет проводить ток небольшого напряжения, разница потенциалов должна быть на уровне киловольта.

Электрохимическая защита кузова автомобиля от коррозии

Что действительно влияет на эффективность защиты автомобиля, так это площадь анода. Чем она больше, тем катодная защита автомобиля от коррозии будет лучше проявляться.

Электрический ток

Чтобы схема исправно работала, электрический ток между двумя электродами не нужен. Даже если он и возникнет, то будет носить характер побочного продукта. Такой ток может образоваться от мокрого анода, намокших колёс машины и т. д. А проявляться он будет на аккумуляторе, который разрядится быстрее обычного.

Электрохимическая защита кузова автомобиля от коррозии

Чтобы установка катодной защиты не принесла вреда автомобилю, а работала в нужном нам направлении, потребуется бортовую систему соединить с анодом посредством добавочного резистора.

Такое устройство позволит ограничить разряд аккумулятора в том случае, если анод будет замкнут на катоде.

Причиной такой ситуации может быть неправильно собранная схема, выход из строя анода, например, полное окисление вплоть до разложения.

Выбираем правильный анод

Важным моментом в процессе формирования электрохимической защиты является выбор анода. Мы рассмотрим все наиболее удачные из распространённых вариантов, чтобы вам было проще сделать свой выбор.

Металлический гараж

Это самый простой, наиболее доступный и, соответственно, самый распространённый вариант анода. А если в этом гараже ещё и пол сделан из железа или хотя бы имеется открытая арматура, то днище машины также будет защищено от пагубного влияния коррозии. В летнее время сила защиты возрастает за счёт парникового эффекта.

Для формирования защиты при таком выборе анода потребуется металлический корпус сооружения (в нашем случае это гараж) соединить с плюсом на аккумуляторе. Эта батарея должна быть установлена в машине посредством резистора или провода для монтажа.

Для плюса можно использовать прикуриватель, но только в том случае, если в нём сохраняется напряжение после отключения зажигания.

Контур заземления

Такой выбор анода потребует от автовладельца аналогичных действий. Но учтите, что устройство катодной защиты по большей части будет работать на днище машины. Эту ситуацию можно исправить, проделав несложную работу.

В землю, по периметру расположения машины, вбивается четыре металлических стержня и соединяются они между собой обычной металлической проволокой.

Подключение контура проводится по аналогии с предыдущим случаем, когда анодом служил металлический гараж.

Металлизированный резиновый хвост с эффектом заземления

Такой способ организации защиты считается самым простым, но не менее эффективным, если разговор идёт за движущуюся машину. При повышенной влажности воздуха имеет место разность потенциалов между автомобилем и влажной дорогой.

По логике влияние коррозии должно усиливаться при таких условиях, но в нашем случае за счёт наличия хвоста усиливается катодная защита. Хвост обязательно должен устанавливаться сзади автомобиля.

На него должна попадать влага в виде брызг, которые вылетают из-под задних колёс.

Электрохимическая защита кузова автомобиля от коррозии

Такое приспособление выполняет ещё и роль антистатика. Хвост должен быть правильно прикреплён к машине: в изолированном положении относительно корпуса ТС по току постоянного характера, а по переменному току он должен быть «закорочен» на корпус. Такое подключение можно организовать за счёт использования RC-цепочки, которая служит элементарным частотным фильтром.

Защитные электроды-протекторы

Как отдельную тему можно рассматривать этот вид анодов, но мы постараемся уложиться в один подзаголовок. Роль защитных протекторов выполняют элементарные пластинки, сделанные из металла. Для их установки можно выбирать самые уязвимые для коррозии места в машине. Чаще всего выбираются крылья, днище и пороги. Принцип действия схож со всеми предыдущими способами.

Защита действует непрерывно и не зависит от движения машины и влажности воздуха, что выступает преимуществом. Но организация такой защиты требует больших временных затрат, ведь таких анодов нужно будет разместить не менее 15 штук.

Электрохимическая защита кузова автомобиля от коррозии

Стоит обратить внимание на металл, из которого будут изготовлены защитные электроды. Есть два варианта:

  1. Разрушающиеся придётся менять каждые пять, а то и четыре года. Это может быть алюминий или нержавейка.
  2. Не разрушающиеся будут служить гораздо дольше, но их стоимость возрастает в несколько раз. В качестве примера можно привести карбоксил, платину, магнетит или графит.

Также нужно знать правила размещения таких анодов:

  1. Форма должна быть прямоугольной или круглой с площадью от 4 до 10 кв. см.
  2. Один такой элемент может защитить не более 35 см площади машины.
  3. Установка производится только на лакокрасочное покрытие с помощью эпоксидного клея, который не контактирует с глянцем.
  4. Пластина должна смотреть навстречу брызгам и агрессивной среде.

Защищать автомобиль необходимо — это должен понимать каждый автовладелец. Из всех способов именно катодная защита демонстрирует хорошие результаты. Есть смысл «попотеть» над организацией одного из способов защиты, чтобы в будущем не лить слёзы над проржавевшим кузовом.

Антикоррозийная – катодная защита авто

Большинству автолюбителей известно, что появление даже небольшой царапины может привести к стремительному распространению ржавчины по кузову. И борьба с этой проблемой заключает в себе массу сложностей. Всевозможные виды покрытий, антикоров, мастик – чем только не пытаются защитить машину автомобилисты.

Вот только для качественной обработки всех мест, наиболее подверженных поражениям ржавчиной, автомобиль иногда приходится разбирать почти полностью. На это дело может уйти масса времени.

Помимо этого, во время эксплуатации автомобиля все покрытия постепенно разрушаются. Вибрация в движении приводит к появлению микротрещин, а удары песчинок и камней появляются сколы на краске. И всё это делает вполне понятным желание каждого автомобилиста найти волшебный прибор, в который придётся вложиться один раз и потом забыть о проблеме ржавчины на кузове навсегда.

Применение прибора в различных сферах

Уже на протяжении долгого времени самые разнообразные объекты защищаются от коррозии катодным методом.

К примеру, на судах практикуется установка специальных протекторов, растворение которых в морской воде обеспечивает защищенность всего корпуса судна.

Вам будет интересно  Краска раптор для авто: преимущества и недостатки

А если говорить о подземных коммуникациях – трубы до укладки обрабатываются антикорами, а затем обматываются лентами из специального материала.

На некотором удалении от труб в землю укладывается анод (электрод) – металлическая болванка, на которую накинут «плюс» от постоянного тока. На саму трубу накидывается «минус». Разность потенциалов защищаемого металла и электрода в цепи электролита проходит ток. На аноде высвобождаются электроны (окислительная реакция) и за счет этого прекращается саморастворение катода (1,2)

Принцип катодной защиты

Необходимо, чтобы в процессе катодной поляризации металлу сообщался отрицательный потенциал, делающий термодинамически маловероятным его окисление. Потенциал в 0,1 – 0,2 В даёт железу и его сплавам полную защиту от коррозии.

Любой сдвиг потенциала может отразиться на степени защиты. По плотности защитный ток должен быть в районе от 10 до 30 мА/м2. Помимо этого, с течением времени из-за концентрационной поляризации (по кислороду) на металле потенциал смещается дополнительно в минус. Это даёт возможность время от времени отключать прибор (зарядка аккумулятора, ремонт автомобиля и т. д.). (3)

Прибор, защищающий кузов от коррозии включает в себя электронный блок и защитные электроды. На корпусе блока размещается световая индикация процесс работы. Устройство обеспечивает поддержку значения потенциала на влажных участках поверхности на том уровне, который необходим для полного прекращения процессов коррозии.

Это происходит за счет того, что защитные электроды разрушаются.В качестве анодов (защитных электродов) могут использоваться материалы и разрушающиеся (алюминий, нерж. Сталь) и неразрушающиеся. Если говорить о неразрушающихся – это могут быть магнетит, платина, графит, карбоксил. По виду электроды изготавливаются как прямоугольные или круглые пластины с площадью от 4 до 9 см2.

Электрохимическая защита кузова автомобиля от коррозии

Рисунок показывает схему довольно простого устройства для антикоррозийной защиты, которое отлично справится с проблемой.

Конечно, самый примитивный вариант подобного устройства может содержать в себе только провода, подключаемые к «плюсу» аккумулятора и защитные электроды.

Но в таком случае будет отсутствовать возможность контроля возникновений коротких замыканий электродов и кузова автомобиля, и слежения за работой самого устройства.

Поэтому здесь в цепи делителя напряжения (R1, R2 и R3) встроен светодиод (VD1), ровно светящийся в рабочем режиме. От аккумулятора ток он потребляет в незначительном количестве, всего где-то 2мА. В случае, если происходит замыкание одного из электродов на кузов машины, диод погасает.

Тогда вам нужно обнаружить и устранить проблему. Светодиод может немного изменяться в свечении, если влажность кузова повышена – так работает катодная защита.

Стоит отметить, что прибор надежен, потому что во время короткого замыкания выхода на кузов даёт ток перегрузки не больше, чем 25-30 мА.

Что необходимо помнить при монтаже и сборке устройства

  • Один электрод способен обеспечить защиту площади, радиус которой равен примерно 0,25-0,35 м.
  • Устанавливать электроды можно только на участки, которые защищены лакокрасочным покрытием.
  • Может использоваться шпаклевка на основе эпоксидного клея или сам клей.
  • Наружная сторона электродов не должна покрываться электроизоляционными покрытиями (краски, клеи, мастики и т. д.).
  • Установка электронного блока осуществляется в любом удобном месте автомобиля, подсоединять его нужно в общую схему электрооборудования.
  • Электронный блок должен постоянно находиться во включенном состоянии, даже если отключено всё электрооборудование автомобиля.

Затрачивание ресурсов батареи прибором не превышает того, что потребляется автомобильными часами. Даже если аккумулятор будет сильно разряжен, работа прибора будет по-прежнему эффективной.

Еще один вид электрической схемы несложного устройства приведен на рис. 2

Электрохимическая защита кузова автомобиля от коррозии

Здесь содержится делитель напряжения, выполненный с двумя резисторами, сопротивлениекоторыхR1 и R2. Вывод от резистора R1 (верхний на схеме) соединяется с плюсовым выводом аккумулятора.

Вывод отR2 (нижний на схеме) соединяется с «минусом» аккумулятора.

Такое соединение резисторов на точке Б даёт на металл кузова потенциал V1, определяемый в выражении U = ExR2 (R1 + R2), где Е – это напряжение аккумулятора (12 В).

Необходимо, чтобы потенциал U равнялся потенциалу защитному, во время которого останавливаются коррозийные процессы. Последовательное соединение резисторов обеспечивает течение тока, равного I = E/(R1 + R2). Сила тока (это от 01 до 100 мА)определяется тем условием, что обычная влажность даёт одному аноду возможность надежной защиты около 4-10 дм2 поверхности. R2 = V/I; R1 = (E/I) – R2.

В случае необходимости внесения изменений в значения потенциала (защитного) и в силу тока, значения для сопротивлений резисторов можно определить исходя из соотношений, приведённых выше. К точке делителя №1 припаиваются изолированные провода, с противоположного конца которых должны быть припаяны стальные пластины анодов.

Анод – это пластина, сделанная из стали с низким содержанием углерода, размером 2х2 см. В качестве защиты могут использоваться аноды и внешние, это будет описано ниже. Применение прибора заставляет корпус автомобиля брать на себя функцию катода, восстанавливающегося во время эксплуатации из-за окисления анодов. Конструкция может быть произвольной.

Вот так будет выглядеть в собранном виде с использованием заглушки кнопки

Электрохимическая защита кузова автомобиля от коррозии

Рис. 3. Электроды, установленные в этих точках будут наиболее эффективны:

Электрохимическая защита кузова автомобиля от коррозии

1 – коробчатые усилители брызговиков, 2 – места крепления подфарников и фар, 3 – нижняя часть передней панели, 4 – полости за щитками усилителями передних крыльев, 5 – внутренние поверхности дверей и порогов, 6, 7 – передние нижние части заднего крыла и арка колеса по cтыку с крылом, 8 – фартуки задней панели.

Защита кузова и днища авто от коррозии: ржавчина не проблема

При взаимодействии металлических деталей автомобиля с окружающей средой начинается их коррозия. Продуктом процесса является ржавчина, которая представляет собой оксид железа. Разрушение металла начинается с момента рождения машины и продолжается в течение эксплуатации.

Ржавчина использует любую возможность, чтобы распространиться по кузову, днищу, другим деталям авто и привести машину в негодность. Постоянная защита от ржавчины – задача каждого автомобилиста, который хочет, чтобы транспортное средство оставалось на ходу как можно дольше.

Электрохимическая защита кузова автомобиля от коррозии

От коррозии на автомобиле нужно избавляться как можно быстрее, иначе может потребоваться дорогостоящий ремонт
[contents h2 h3]

Взаимодействуя с водой, металлические детали автомобиля подвергаются воздействию двух видов коррозии. Электрохимическая коррозия возникает из-за наличия в каждой капле воды растворенных солей и газов.

Химическая коррозия появляется из-за разрушающего воздействия на металл водородных ионов и кислорода.

С учетом воздействия двух видов разрушения на металлические детали авто защита от коррозии имеет несколько вариантов.

Как защитить машину

Каждый владелец автомобиля сам выбирает, как защитить авто от коррозии. Выделяется три метода:

  1. Пассивный – машина изолируется от вредного воздействия окружающей среды
  2. Активный – проводятся систематические работы по целенаправленной защите металлических деталей автомобиля
  3. Преобразующий – ведется борьба с уже появившейся ржавчиной: механическое удаление, превращение в твердый слой под покраску при помощи модификаторов ржавчины, выжигание

Каждый метод борьбы предполагает наличие определенных способов, которыми осуществляется защита от коррозии. Лучше всего работает активный метод, который постоянно совершенствуется. На сегодняшний день самой перспективной считается электрохимическая защита кузова от коррозии.

Виды защиты

В зависимости от применяемых материалов и технологий защита кузова от коррозии проводится следующими способами:

  • Электрохимический – действие основано на использовании окислительно-восстановительных реакций. Ржавчину можно полностью остановить
  • Барьерный – создается защита из другого материала. Используются ЛКМ, грунтование, ламинирование, пластиковые накладки. Применяются мастики, аэрозоли, жидкое стекло. Эти материалы замедляют развитие ржавчины
  • Комбинированный – сочетаются электрохимический и барьерный методы борьбы с коррозией: покраска оцинкованной детали, фосфатирование

Использование электрохимической защиты

Суть метода заключается в изменении электродного потенциала автомобильного кузова, в результате чего процессы ржавления останавливаются. Электрохимическая защита кузова автомобиля от коррозии проводится двумя методами – катодным и анодным.

Применение катодной защиты

Катодная защита кузова автомобиля от коррозии основана на сдвиге потенциала корпуса в отрицательную сторону при помощи источника постоянного тока, действующего извне. В защитное устройство входят электронный блок, на котором размещается световая индикация, и вспомогательный электрод. Другое название метода – электронная защита автомобиля от коррозии.

“Срок действия защиты достигает 10 лет, а преимуществом метода является возможность сохранить в целости кузов автомобиля, труднодоступные места, крепежные элементы”

Так как со временем наблюдается дополнительное смещение потенциала, то иногда прибор нужно отключать. Катодная защита от коррозии имеет лишь один недостаток. Если электродный потенциал сместится слишком сильно, то начнется растрескивание металла – он станет хрупким.

Применение жертвенных анодов

В этом случае используются аноды, сделанные из меди, алюминия, цинка. Пластины, установленные в наиболее подверженных коррозии местах, перетягивают на себя разрушительный процесс. К таким местам на корпусе автомобиля относятся расположенные близко к дороге зоны креплений брызговиков, фар, подфарников, внутренние поверхности порожков или дверей.

Анодная защита кузова автомобиля от коррозии основана на особенностях течения окислительно-восстановительных процессов. Минусом видится необходимость присверливания пластин, при этом покрыть все поврежденные коррозией места автомобиля не получается.

Оцинковка кузова

Оцинковка кузова автомобиля делается на заводе-изготовителе. Обычно для этого детали будущего автомобиля погружаются в ванну с расплавленным цинком и металл оседает на поверхности. Толщина покрытия не превышает 2 мкм. Принцип действия метода основан на электрохимических процессах. Цинк перетягивает на себя окислительные процессы. Нанесение цинка возможно тремя способами:

  1. Термический – погружение в ванну с расплавленным металлом
  2. Гальванический – происходит погружение в ванную с электролитом и цинк налипает на поверхность детали
  3. Холодный – поверхность окрашивается составом, содержащим цинк

Минусом защиты является то, что цинковое покрытие имеет микропоры и уже через год оцинковка кузова автомобиля не работает должным образом. Современный способ цинкового напыления – катафорез – допускает нанесение слоя цинка в 7-9 мкм. Срок защиты увеличивается до 10 лет.

Вам будет интересно  Как наклеить виниловую наклейку.

Оцинковка – это комбинированный способ защиты от коррозии: барьерный и электрохимический.

Барьерные методы

К ним относится нанесение другого материала на поверхность, которую нужно уберечь от коррозии.

Грунтовки и лакокрасочные материалы

Традиционная защита машины от коррозии. Грунт предохраняет металл от попадания на него влаги, одновременно является связующим звеном между кузовом и краской. Лакокрасочные материалы повышают степень сохранности, но оба средства не предотвращают появления ржавчины.

Процесс покраски автомобиля на заводе обеспечивает максимально возможную степень защиты кузова на первоначальном этапе.

Помимо обезжиривания, промывки, оцинковки корпус машины подвергается фосфатированию. Фосфатирование кузова автомобиля подразумевает погружение детали в ванную с растворенными солями фосфора.

Процедура обеспечивает дополнительную антикоррозийную сохранность и беспроблемную грунтовку.

Современные лакокрасочные материалы предлагают максимальную защиту и постоянно совершенствуются. Защитное покрытие Raptor Upol выпускается специально для внедорожников. Средство ложится на поверхность авто полиуретановой пленкой, защищая от коррозии. Единственным недостатком считается матовый вид покрытия.

Ламинирование

Защита кузова автомобиля этим способом представляет собой обтягивание машины пленкой. Ламинат приклеивается к кузову и повышает сохранность любой его части.

Перед проведением процедуры поверхность автомобиля проходит тщательную подготовку – моется, сушится, заделываются царапины, сколы, трещины, очаги коррозии.

На правильно подготовленной детали пленка держится пару лет, причем она выдерживает максимально интенсивный режим использования автомобиля.

Жидкое стекло

Защитить лакокрасочное покрытие автомобиля помогает нанесение жидкого стекла.

Оно взаимодействует с поверхностью авто на молекулярном уровне и создает непроницаемый для грязи, воды, химических реагентов слой, предупреждает появление трещин и царапин.

Состав держится на машине до 12-ти месяцев. Обработка кузова автомобиля жидким стеклом позволяет надолго уберечь поверхность от коррозии.

О защите днища и кузова

Уберечь видимые части кузова от ржавчины проще, чем скрытые от глаз внутренности автомобиля. Для начала следует максимально защитить те конструктивные элементы, которые каждый день подвергаются воздействию грязи, камней, реагентов.

Это пороги и колесные ниши. Барьерные средства против коррозии в данном случае – это подкрылки, пластиковые накладки на пороги или днище.

Установить пороги из нержавейки для авто, значит, обеспечить максимально надежную защиту одной из самых подверженных коррозии частей автомобиля.

Электрохимическая защита кузова автомобиля от коррозии

Своевременная защита автомобиля избавит от серьезных последствий

Защитить кузов от коррозии изнутри можно при помощи следующих средств:

  1. Жидкие масла – обволакивают поверхность, вытесняют влагу, в них содержатся ингибиторы коррозии
  2. Парафины и воск – создают защитную пленку после распыления. Антикоррозийный спрей для авто, в состав которого входит воск, выступает в качестве консерванта, прост в применении, эффективен в действии

Работа с днищем

Защитить днище автомобиля от коррозии можно следующими средствами:

  • Мастики – выпускаются высыхающими и невысыхающими, содержат металлическую пудру, которая придает покрытию особую прочность
  • Жидкие средства для распыления подходят для обработки днища в труднодоступных местах
  • Преобразователи ржавчины – используются для устранения коррозии перед нанесением мастики или другого средства

Несмотря на наличие современных средств против ржавчины, считается, что лучше обработать днище автомобиля от коррозии привычной битумной мастикой. Цель использования состава – консервация и защита элементов конструкции, подверженных максимальному износу.

Мастика наносится на полностью очищенную от старого покрытия поверхность. После засыхания она превращается в эластичную пленку с повышенными показателями прочности. Средство для защиты от коррозии кладется слоем 400 мкм и обладает отличными шумоизоляционными свойствами.

Этим же средством проводится обработка колесных ниш.

Советы по антикоррозийной обработке днища

Обработка машины от коррозии – дело серьезное и ответственное. При этом особенно важным является целостность днища автомобиля.

Обновление антикоррозийного покрытия днища проводится раз в два года.

Проводя антикоррозийные работы, следует обратить внимание на следующие моменты:

  1. Работать нужно в проветриваемом помещении или на улице
  2. Температура выбирается плюсовой от 5 до 30 градусов
  3. Антикоррозийная защита покрытия автомобиля обычно легковоспламеняема, поэтому источники огня убираются
  4. Мастика подогревается в специальном приборе
  5. Необходимо обеспечить защиту рук, лица, глаз

Если защита от ржавчины авто не проводится, то коррозия нанесет серьезные повреждения транспортному средству за короткое время. Заменить испорченные детали часто нельзя или это стоит очень дорого.

Подводя итоги

Антикоррозийное покрытие всех частей автомобиля необходимо проводить вовремя. Учитывая климатические особенности, даже новая машина нуждается в такой процедуре.

Борьба против ржавчины ведется как современными средствами – используются электронная защита от коррозии или обработка кузова автомобиля жидким стеклом, так и зарекомендовавшими себя составами в виде битумной мастики. Внешняя поверхность кузова, днище, скрытые полости – ни одна деталь машины не должна остаться без антикора.

Катодная защита кузова от коррозии

Автовладельцу, который задумывается о хорошем состоянии и товарном виде своего автомобиля, очень важен вопрос защиты кузова от ржавчины.

Вы, скорее всего, замечали, что купить подержанный автомобиль с идеальным лакокрасочным покрытием очень трудно. Конечно, это зависит от эксплуатации и года выпуска.

В приведенной статье рассмотрена катодная защита кузова автомобиля от коррозии, этот способ также называется электрохимической защитой.

Но особенно актуальна проблема повреждения кузова в зимнее время года, когда дороги поливают химическими реагентами. Они предотвращают обледенение проезжей части, улучшая сцепление колес, но оказывают негативное влияние на лакокрасочное покрытие.

Где применяется катодная защита от коррозии?

При любой царапине или сколе на тех местах, где имеется необработанный металл, происходит химическое взаимодействие (окисление), и как результат − появление ржавчины. Как же это предотвратить?

В Японии, например, с ее мокрым морским климатом для предотвращения ржавчины автомобили обрабатывают высокими частотами. Еще есть способ оцинковки кузова, который не очень дешевый, но действенный.

В первую очередь катодную защиту используют от коррозии:

  • массивных металлоконструкций;
  • металлических опор, контактирующих с грунтовыми покрытиями;
  • морских сооружений и металлоконструкций;
  • судов;
  • трубопроводов.

Например, если газовый трубопровод, пущенный под землей, не предохранить от «повреждения», то такая труба выйдет из строя за несколько месяцев. Поэтому метод катодной защиты хорошо зарекомендовал себя не только в автомобильной, но и в других отраслях промышленности.

Катодная защита может предотвратить как полное, так и частичное разрушение металла. Она функционирует постоянно (за ней не нужно следить), поддерживая процесс восстановления «зараженной» поверхности. Также эффективно используется при различных видах коррозии, например, точечная ржавчина в виде мелких точек по поверхности.

Механизм работы катодной защиты кузова

Схема установки катодов в автомобиле

Если говорить простым языком, то кузов автомобиля станет катодом электродной пары. За анод берутся металлические поверхности, хорошо проводящие ток, а также влажный асфальт. Слабым проводником становится воздух. За счет малой разности потенциалов ржавчина появляется на аноде, а не на кузове.

Подключение катодов к аккамулятору

Очень важный момент: при катодном методе защиты используется именно разность потенциалов! Для того чтобы случайно возникший ток не расходовал заряд аккумулятора, батарея подключается к аноду через резистор, принимающий на себя ненужный заряд.

В качестве положительного полюса питания используется много вариантов, но автомобиль лучше защищен при большей площади присоединения.

Варианты размещения анода

В любом случае роль катода будет выполнять кузов автомобиля. Пользователю необходимо выбрать предмет, который будет использован в качестве анода. Выбор осуществляют на основе условий эксплуатации автомобиля.

Анод – корпус гаража

За анод принимается гараж, если он сделан из металла. Так же, за счет металлических элементов на полу, будет происходить защита днища авто. Подключение анода происходит к аккумуляторной батарее.

Анод – контур заземления

Защищаемый объект – дно автомобиля, которое подвержено ржавчине сильнее. Контур состоит из четырех железных прутков (длина 1-1,5 м), забитых в землю на углах парковки. Подключение происходит через резистор.

Анод – заземлитель

Этот метод защищает автомобиль при движении. Он приспосабливается в таком месте, где по максимуму будет контактировать с водой, летящей от дорожного полотна. Также заземлитель служит для снятия статического электричества с корпуса автомобиля. При установке происходит изоляция от тока. Также необходимо с помощью интегрирующей цепи RC запитать на кузов.

Анод – протектор

Для этого метода защиты используются специальные пластины из более активного металла, по сравнению с защищаемой поверхностью. Они крепятся на автомобиле в местах, более подверженных ржавчине: пороги, крылья двери и днище.

Данная защита локальная, но действует постоянно − как в стоячем состоянии, так и в движении. Однако на один сохраняемый от ржавчины элемент ставится от 15 штук. Говорят, что это действенный метод защитить автомобиль локально.

Главное при установке учитывать определенные моменты:

  • действие протектора составляет примерно 25 сантиметров;
  • для монтажа электрода необходимо иметь целое и качественное покрытие без ржавчины, царапин и рыжиков;
  • обязательно электрод крепится при помощи электропроводящей эпоксидной смолы (клей или шпатлевка на основе клея);
  • электроды снаружи ничем не нужно закрывать;
  • недопустимо применение с электродами мастики и краски, так как эти изоляционные материалы не дадут работать аноду.

Стоит отметить, что процесс окисления металлов достаточно медленный. Катодная защита начнет действовать сразу же, а заметна станет через определенное время.

Вам выбирать, по какой схеме защитить свой автомобиль от коррозии и какой анод использовать. Главное, вы надолго и надежно предохраните кузов от ржавчины и жучков, что положительно скажется на внешнем виде автомобиля на долгое время.

Источник http://http://polus-avto.ru/kraska/elektrohimicheskaya-zashhita-kuzova-avtomobilya-ot-korrozii.html
Источник http://

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *