Из каких материалов сделан автомобиль. Из чего делают кузова автомобилей? Стеклопластик и пластмассы

Из каких материалов сделан автомобиль. Из чего делают кузова автомобилей? Стеклопластик и пластмассы

Расскажем из чего делают кузова автомобилей и какие технологии появились? Рассмотрим недостатки и преимущества основных материалов, используемых при изготовлении машины.

Для изготовления кузова необходимо сотни отдельных частей, которые затем нужно соединить в одну конструкцию, соединяющую все части современного автомобиля. Для легкости, прочности, безопасности и минимальной стоимости кузова конструкторам необходимо идти на компромиссы, искать новые технологии, новые материалы.

Сталь

Конструкторам нужно, чтобы сталь была прочной и обеспечивала высокий уровень пассивной безопасности, а технологам нужна хорошая штампуемость. И главная задача металлургов — угодить и тем и другим. Поэтому разработан новый сорт стали, позволяющий упростить производство и в дальнейшем получить заданные свойства кузова.

Изготавливается кузов в несколько этапов. С самого начала изготовления из стальных листов, имеющих разную толщину, штампуются отдельные детали. После эти детали свариваются в крупные узлы и с помощью сварки собираются в одно целое. Сварку на современных заводах ведут роботы.

  • низкая стоимость;
  • высокая ремонтопригодность кузова;
  • отработанная технология производства и утилизации.
  • самая большая масса;
  • требуется антикоррозийная защита от коррозии;
  • потребность в большом количестве штампов;
  • ограниченный срок службы.

Алюминий

Алюминиевые сплавы применяются в ограниченном количестве. Поскольку прочность и жесткость этих сплавов ниже, чем у стали, поэтому толщину деталей приходится увеличивать и существенного снижения массы кузова получить не удается. Кроме того, шумоизолирующая способность алюминиевых деталей ниже, чем стальных, и требуются более сложные мероприятия для достижения акустической характеристики кузова.

Начальный этап изготовления алюминиевого кузова схожий с изготовлением стального. Детали вначале штампуются из листа алюминия, потом собираются в целую конструкцию. Сварка используется в среде аргона, соединения на заклепках и/или с использованием специального клея, лазерная сварка. Также к стальному каркасу, который изготовлен из труб разного сечения, крепятся кузовные панели.

Достоинства:

  • возможность изготовить детали любой формы;
  • кузов легче стального, при этом прочность равная;
  • легкость в обработке, вторичная переработка не составляет труда;
  • устойчивость к коррозии, а также низкая ценатехнологических процессов.
  • низкая ремонтопригодность;
  • необходимость в дорогостоящих способах соединения деталей;
  • необходимость специального оборудования;
  • значительно дороже стали, так как энергозатраты намного выше.

Стеклопластик и пластмассы

Около 80% пластмасс, применяемых в автомобилях, приходится на пять типов материалов: полиуретаны, поливинилхлориды, полипропилены, АБС-пластики, стеклопластики. Остальные 20% составляют полиэтилены, полиамиды, полиакрилаты, поликарбонаты.

Из стеклопластиков изготовляют наружные панели кузовов, что обеспечивает существенное уменьшение массы автомобиля. Из полиуретана делают подушки и спинки сидений, противоударные накладки. Сравнительно новым направлением является применение этого материала для изготовления крыльев, капотов, крышек багажника.

Поливинилхлориды применяют для изготовления многих фасонных деталей (щиты приборов, рукоятки) и обивочных материалов (ткани, маты). Из полипропилена делают корпуса фар, рулевые колеса, перегородки и многое другое. АБС-пластики используют для различных облицовочных деталей.

Достоинства стеклопластика:

  • при высокой прочности маленький вес;
  • поверхность деталей обладает хорошими декоративными качествами;
  • простота в изготовлении деталей, имеющих сложную форму;
  • большие размеры кузовных деталей.
  • высокая стоимость наполнителей;
  • высокое требование к точности форм и к чистоте;
  • время изготовления деталей достаточно продолжительное;
  • при повреждениях сложность в ремонте.

Автомобильная промышленность не стоит на месте и развивается в угоду потребителю, который хочет быстрый и безопасный автомобиль. Это приведет к тому, что в производстве авто используются новые, отвечающие современным требованиям материалы.

Добрый день, сегодня мы расскажем о том, из чего изготавливают автомобильный кузов , какие материалы применяют при производстве , а также при помощи, каких технологий осуществляется этот важный процесс. Кроме того, узнаем, какие существуют основные разновидности металлов , пластика и прочих материалов , которые зачастую используются при производстве элементов кузова транспортного средства, а также рассмотрим, какими преимуществами с недостатками обладает то или иное сырье в отдельности каждого вида . В заключении мы поговорим о том, какой материал на сегодняшний день является самым востребованным у автопроизводителей , а также от чего зависит качество и долговечность готового кузова машины.

КАК СОБИРАЮТ АВТОМОБИЛИ LEXUS И TOYOTA

ЧТО ТАКОЕ КРУПНОУЗЛОВАЯ СБОРКА АВТОМОБИЛЕЙ

Кузов любого автомобиля играет роль несущей конструкцией , в котором использовано при производстве огромное многообразие различных материалов и комплектующих . Чтобы кузов машины отслужил свой срок службы надежно, а также качественно, необходимо понимать, как за ним правильно следить и эксплуатировать . Чтобы это понимать, нужно знать из чего изготовлена несущая конструкция транспортного средства, а также какая технология сварки и производства применялась. Благодаря этой информации , мы сможем без труда определить преимущества и недостатки того или иного типа кузова .

Справочно заметим, что для изготовления кузова нужны сотни отдельно взятых запасных частей , компонентов и деталей , которые затем необходимо очень точно , а также грамотно соединить в единую конструкцию , которая будет объединять в себе все элементы транспортного средства. Чтобы изготовить прочный , при этом безопасный , легкий и по приемлемой стоимости кузов современного автомобиля, нужно постоянно искать различные компромиссы , а также новые технологии с материалами .

1. Изготовление кузова автомобиля из стали. Преимущества и недостатки

Большинство кузовов автомобиля, а точнее его детали изготавливается из разных сортов стали , алюминиевых сплавов и даже пластмассы с добавлением стекловолокна . Но основным материалом на сегодняшний день все же выступает низкоуглеродистая листовая сталь с примерной толщиной в 0,7-2 миллиметра . Благодаря использованию тонкого листа стали , автопроизводителям удалось уменьшить общую массу транспортного средства и при этом увеличить жесткость кузова .


Высокая прочность кузова получается благодаря специальным свойствам и составу стали , а также его способностью к глубокой вытяжке , то есть можно изготавливать детали сложных форм . Кроме того, нельзя забывать, что новые технологии в сварке помогают получать высокотехнологичные соединения . Однако сталь обладает высокой плотностью и слабой коррозионной стойкостью , поэтому такой материал требует специальных дополнительных мероприятий для защиты от коррозии .


В процессе создания кузовов из стали , задача конструкторов заключается в том, чтобы наделить материал прочностью и обеспечить высокий уровень пассивной безопасности . Задача технологов заключается в правильном подборе состава стали , его сочетание с другими сплавами и компонентами , чтобы материал был хорошо штампуем . Задача же металлургов заключается в том, чтобы правильно отлить нужную по составу и качеству сталь . Справочно заметим, что ежегодно разрабатываются десятки новых сортов и марок стали , которые позволяют упростить производство , а также получить заданные специалистами свойства несущей конструкции транспортного средства.


Как правило, изготовление кузова происходит в несколько стадий производственного процесса . Первоначально происходит изготовление , а затем прокатка стальных листов , которые обладают разной толщиной . После этого листы подвергают штамповке для создания определенных деталей машино-комплекта . На заключительной стадии готовые отштампованные детали свариваются специальным методом и собираются в единый несущий узел , он же кузов . Справочно заметим, что почти вся сварка на автозаводах производится специальными высокоточными роботами .


Положительные стороны стали при производстве автомобильных кузовов :

низкая стоимость материала в сравнении с другим сырьем ;

— четко отработанная технология изготовлени я и утилизации материала;

оптимальная ремонтопригодность готового кузова .


Отрицительные стороны стали при производстве автомобильных кузовов :

высокая масса материала и готового кузова ;

потребность в специальной штамповке и большом количестве штампов для скрепления деталей;

не высокий срок службы готового кузова .


Что касается негативных сторон при производстве кузова из стали , то благодаря постоянному совершенствованию технологий изготовления автомобильных деталей , а также процесса штамповки , данный материал становится наиболее оптимальным для автопроизводителей. На сегодняшний день, доля высокопрочных сталей в структуре кузова постоянно увеличивается . Сегодня большинство автопроизводителей применяют сверхвысокопрочные сплавы стали нового поколения .

К таким видам материала относят такую марку стали , как TWIP , которая содержит большое количество марганца в своем составе , доля вещества может доходить до 25 процентов . Сталь такого типа обладает высокой пластичностью , устойчивостью к частым деформациям , благодаря чему материал можно подвергать относительному удлинению . Удлинение «ТВИП-стали » может происходит на 50-70 процентов , а пределом прочности служит показатель в 1450 МегаПаскаль . Для сравнения , прочность обычной стали составляет не более 250 МегаПаскаль , а высокопрочной до 600 МегаПаскаль .

2. Изготовление кузова автомобиля из алюминия. Преимущества и недостатки

Что касается автомобильных кузовов из алюминиевых сплавов , то их стали производить совсем недавно, примерно около 15 лет назад, для промышленности это считается маленьким сроком. Как правило, алюминий в автомобилестроении применяют для изготовления отдельных частей кузова , реже всего целиком. В большинстве случаев алюминий используется для производства капотов , крыльев , дверей , крышки багажника , а также прочих элементов и деталей .


Автопроизводителями на сегодняшний день сплавы из алюминия используются в ограниченном количестве. Все это из-за того, что жесткость и прочность алюминиевых сплавов намного ниже, чем у той же стали . В связи с чем толщину деталей из этого материала производители увеличивают , поэтому значительного снижения массы готового кузова получить почти невозможно. Кроме того, такой параметр , как шумоизоляция у алюминиевых деталей также хуже, чем у элементов из стали , к тому же при производстве требуются более сложные процедуры , чтобы достичь оптимального акустического эффекта и добиться положительных характеристик кузова по этому показателю .


Что касается производственного процесса, на котором изготавливают готовый алюминиевый кузов , то он очень схож с ранее описанной процедурой создания несущей конструкции из стали . На первой стадии , детали из листа алюминия подвергают штамповке , а затем собираются в единый цельный узел . При сварке применяется аргон , детали соединяются при помощи специальных заклепок или клея . На завершающей стадии , основные участки будущего кузова подвергают точечной сварке , а затем к стальному каркасу , изготовленному из труб разного сечения , прикрепляются кузовные панели и машино-комплекты .


Положительные стороны алюминия при производстве автомобильных кузовов :

Появляется возможность производства кузовных элементов любой формы и сложности ;

масса готового алюминиевого кузова значительно легче стального , при равной прочности ;

— материал легко подвергается обработке , процесс утилизации прост;

— высокая устойчивость к коррозии и ржавчине ;

низкая стоимость технологических процессов при производстве.


Отрицительные стороны алюминия при производстве автомобильных кузовов :

Высокая сложность ремонта деталей;

— при производстве используются дорогостоящие крепежи для соединения панелей ;

— необходимость наличия специального высокоточного оборудования ;

— намного дороже стали , в связи с высокими энергозатратами .


Алюминий обладает средней пластичностью иустойчивостью к разного рода деформациям . Такой материал не рекомендуется подвергать удлинению ,в связи с тонкой номинальной толщиной . Пределом прочности алюминия служит показатель в 180-210 МегаПаскаль . Для сравнения , прочность стандартной стали составляет около 240-250 МегаПаскаль , а высокопрочной в районе 500-600 МегаПаскаль .

3. Изготовление кузова автомобиля из стеклопластика и пластмассы. Преимущества и недостатки

Что касается производства кузова из стеклопластика , то имеется в виду такой материал , как волокнистый наполнитель , который специально пропитывается полимерными смолами . Как правило, материал такого вида используется для облегчения общей массы готового кузова . Самыми известными наполнителями , он же стеклопластик являются стеклоткань , кевлар и карбон .


Справочно заметим, что примерно 85 процентов пластмасс , которые применяются в автомобилестроении , приходятся на 5 основных видов материалов , такие как полиуретаны , поливинилхлориды , ABS-пластик , полипропилены и стеклопластики . Около 15 оставшихся процентов приходится на полиэтилены , полиакрилаты , полиа миды , поликрбонаты и прочие материалы.


Кроме того, из разных видов стеклопластика производят наружные панели кузовов , что в свою очередь обеспечивает значительное снижение массы готового транспортного средства. Например из полиуретана изготавливают подушки и спинки сидений , накладки противоударного типа и прочие компоненты . Буквально, как пару лет назад из стеклопластика начали в массовом порядке производить такие элементы кузова , как капоты , крылья , двери и крышки багажников .


Положительные стороны стеклопластика при производстве автомобильных кузовов :

Имея высокую прочность , деталь имеет небольшой вес ;

внешняя поверхность элементов обладает оптимальными декоративными параметрами ;

простота изготовления элементов, которые имеют сложную форму ;

Имеется возможность производства деталей крупных размеров .


Отрицательные стороны стеклопластика при производстве автомобильных кузовов :

— сравнительно высокая цена на наполнители ;

высокие требования к точности форм , разметке и готовой детали ;

производство деталей осуществляется продолжительное время;

Высокая сложность в ремонте при повреждении деталей.


Справочно заметим, что довольно часто такие материалы, как поливинилхлориды используются для производства фасонных деталей , например рукояток , панелей приборов и прочие элементы. Зачастую поливинилхлориды применяют совместно с обивочными материалами , на примере разных тканей . Что касается полипропилена , то из него часто изготавливают корпуса фар , рулевые колонки , воздуховоды и прочие элементы. ABS-пластик используют для облицовки деталей , как интерьера , так и экстерьера автомобиля.

Видео обзор: «Из чего изготавливают кузов автомобиля. Какие материалы используются при производстве»

В заключении отметим, что автомобильная промышленность сегодня не стоит месте и старается развиваться лицом к покупателю, который хочет динамичную , экономичную , надежную , безопасную и при этом недорогую машину. Все это ведет автомобилестроение к тому, что в производстве транспортных средств применяются новые технологии и материалы , которые отвечают современным требованиям , а также стандартам .

БЛАГОДАРИМ ВАС ЗА ВНИМАНИЕ. ПОДПИСЫВАЙТЕСЬ НА НАШИ НОВОСТИ. ДЕЛИТЕСЬ С ДРУЗЬЯМИ.

В протяжении всей истории, с того момента как был сотворен автомобиль, повсевременно велись поиски новых материалов. И кузов автомобиля не был исключением. Производили кузов из дерева, стали, алюминия и разных видов пластика. Но на этом поиски не останавливались. И, наверное, каждому любопытно, из какого материала делают кузова автомобилей сейчас?

Пожалуй, изготовка кузова является при разработке автомобиля одним из самых сложных процессов. Цех в заводе, где выполняются кузова, занимает площадь примерно 400 000 м кВ, цена которого млрд баксов.

Для производства кузова нужно больше сотки отдельных частей, которые потом необходимо соединить в одну конструкцию, соединяющую внутри себя все части современного автомобиля. Для легкости, прочности, безопасности и малой цены кузова конструкторам нужно всегда идти на компромиссы, находить новые технологии, новые материалы.

Разглядим недочеты и достоинства главных материалов, применяемых при изготовлении современных кузовов автомобилей.

Этот материал употребляется для производства кузовов издавна. Сталь имеет отличные характеристики, дозволяющие изготавливать детали различной формы, и при помощи разных методов сварки соединять нужные детали в целую конструкцию.

Разработан новый сорт стали (упрочняющийся во время термообработки, легированный), позволяющий упростить создание и в предстоящем получить данные характеристики кузова.

Делается кузов в несколько шагов.

С самого начала производства из железных листов, имеющих разную толщину, штампуются отдельные детали. После эти детали свариваются в большие узлы и при помощи сварки собираются в одно целое. Сварку на современных заводах ведут боты, да и ручные виды сварки также используются — полуавтоматом в среде углекислого газа либо употребляется контактная сварка.

С возникновением алюминияпотребовалось разрабатывать новые технологии для получения данных параметров, которые должны быть у железных кузовов. Разработка Tailored blanks как раз и является одной из новинок — сваренные встык по шаблону железные листы различной толщины из различных видов стали образуют заготовку для штамповки. Тем отдельные части сделанной детали владеют пластичностью и прочностью.

  • низкая цена,
  • высочайшая ремонтопригодность кузова,
  • отработанная разработка производства и утилизации кузовных деталей.
  • наибольшая масса,
  • требуется защита от коррозии,
  • потребность в большенном количестве штампов,
  • их накладность,
  • такжеограниченный срок службы.

Все идет в дело.

Все материалы, о которых говорилось выше, имеют положительные характеристики. Потому конструкторами проектируются кузова, сочетающиеся детали из различных материалов. Тем при использовании можно обходить недочеты, а использовать только положительные свойства.

Кузов Мерседес-бенз CL является примером гибридной конструкции, потому что при изготовлении применялись такие материалы — алюминий, сталь, пластик и магний. Из стали сделаны днище багажного отделения и каркас моторного отдела, и некие отдельные элементы каркаса. Из алюминия сделан ряд внешних панелей и деталей каркаса. Из магния сделаны каркасы дверей. Из пластика изготавливают крышку багажника и фронтальные крылья. Еще вероятна такая конструкция кузова, в какой каркас будет сделан из алюминия и стали, а внешние панели из пластика и/либо алюминия.

  • вес кузова понижается, при всем этом сохраняется твердость и крепкость,
  • достоинства каждого из материалов при применении употребляются очень.
  • необходимость особых технологий соединения деталей,
  • непростая утилизация кузова, потому что нужно за ранее разобрать кузов на элементы.

Дюралевые сплавы для производства авто кузовов начали использовать относительно не так давно, хотя и были использованы в первый раз в прошедшем столетии, в 30-е годы.

Употребляют алюминий при изготовлении всего кузова либо его отдельных деталей — капот, каркас, двери, крышу багажника.

Исходный шаг производства дюралевого кузова похожий с созданием железного кузова. Детали сначала штампуются из листа алюминия, позже собираются в целую конструкцию. Сварка употребляется в среде аргона, соединения на заклепках и/либо с внедрением специального клея, лазерная сварка. Также к железному каркасу, который сделан из труб различного сечения, крепятся кузовные панели.

  • возможность сделать детали хоть какой формы,
  • кузов легче железного, при всем этом крепкость равная,
  • легкость в обработке, вторичная переработка не составляет труда,
  • устойчивостьк коррозии (не считая химической), такжемалая стоимость технологических процессов.
  • низкая ремонтопригодность,
  • необходимость в дорогостоящих методах соединения деталей,
  • необходимость специального оборудования,
  • существенно дороже стали, потому что затраты энергии намного выше

Термопласты.

Это таковой тип пластического материала, который при повышении температуры перебегает в жидкое состояние и делается текучим. Этот материал используется при изготовлении бамперов,деталей обшивки салона.

  • легче железного,
  • при переработке малые издержки,
  • низкая цена подготовки и самого производства при сопоставлении с дюралевыми и железными кузовами (не нужна штамповка деталей, сварочное создание, гальваническое и окрасочное производства)
  • потребность в огромных и дорогостоящих литьевых машинах,
  • при повреждениях сложность в ремонте, в неких случаях единственным выходом является подмена детали.

Стеклопластик.

Под заглавием стеклопластик имеется в виду хоть какой волокнистый наполнитель, который пропитан полимерными термореактивными смолами. Более известными наполнителями числятся — карбон, стеклоткань, кевлар, также волокна растительного происхождения.

Карбон, стеклоткань из группы угле-пластиков, которые представляют собой сеть из переплетенных углеродных волокон (притом, переплетение происходит под различными определенными углами), которые пропитаны особыми смолами.

Кевлар — это синтетическое полиамидное волокно, отличающееся небольшим весом, устойчивое к высочайшей температуре, негорючее, по прочности на разрыв превосходит сталь в пару раз.

Разработка производства кузовных деталей заключается в последующем: в особые матрицы укладывается слоями наполнитель, который пропитывают синтетической смолой, потом оставляют для ее полимеризации на определенное время.

Есть некоторое количество методов по изготовлению кузовов: монокок (весь кузов — одна деталь), внешняя панель из пластика, установленная на дюралевом либо железном каркасе,атакже идущий без перерывов кузов с вставленными в его структуру силовыми элементами.

  • при высочайшей прочности небольшой вес,
  • поверхность деталей обладает неплохими декоративными свойствами (это позволит отрешиться от покраски),
  • простота в изготовлении деталей, имеющих сложную форму,
  • огромные размеры кузовных деталей.
  • высочайшая цена заполнителей,
  • высочайшее требование к точности форм и к чистоте,
  • время производства деталей довольно длительное,
  • при повреждениях сложность в ремонте.

Из железа. Причем, практически все автомобили, которые собираются в России, делаются из российского железа. В первую очередь, это кузова, сталь для которых делают на российских металлургических заводах. Сегодня я покажу, как делают оцинкованную сталь на Череповецком металлургическом комбинате «Северсталь», основным потребителем которой является как раз отечественный автопром. Нужно понимать, что именно здесь закладывается тот запас прочности и коррозийной устойчивости, которые будут определять длительность и беспроблемность эксплуатации автомобилей в суровых российских условиях и именно поэтому оцинковочный цех является лицевым участком Череповецкого меткомбината. Попадая сюда из других цехов, просто поражаешься стерильной, чуть ли не медицинской чистоте, гостеприимуству и практически полной автоматизации процесса. Сразу видно, что все здесь оснащено по последнему слову техники и понятно, почему именно в цех оцинковки осуществлял свой визит В.В. Путин во время посещения Северстали в феврале 2014 года. Итак, как же оцинковывают сталь для наших автомобилей? На склад оцинковочного цеха сталь приходит в рулонах. Они разной толщины и длины и эти параметры зависят от заказчика. Естественно, каждая партия под каждого заказчика оцинковывается по разным программам и с разными параметрами. На сегодняшний день предприятие про50 марок горячеоцинкованного листового металла толщиной 0,4 – 2,0 мм и шириной от 900 до 1850 мм для отечественного автопрома и международных автомобильных концернов: Renault-NISSAN, VOLKSWAGEN, HYUNDAI-KIA, Ford, GM и др. Некоторые марки оцинкованного листа выпускаются и поставляются на автопредприятия в России только Череповецким металлургическим комбинатом.
Рядом с рулонами стали можно увидеть огромные. -кн чушки с цинком, который будут «женить» с листовой сталью в специальной ванной (но об этом чуть ниже)
Сначала рулоны стали разматывают, а затем сваривают, чтобы получить непрерывное полотно. Делается это при помощи специальной хитрой машины, которая позволяет сделать процесс непрерывным, несмотря на то, что для процесса сварки необходимо на короткое время останавливать конвейер. Кстати, линию по производству горячеоцинкованного листа спроектировала бельгийская фирма «CMI», а ввели ее в эксплуатацию в 2005 году.
Делается это при помощи специального накопителя в виде подвижной гармошки. Как вы понимаете, для того, чтобы соединить концы двух рулонов, нужно сделать паузу. А процесс оцинковки непрерывен. Для этого и создан накопитель: он выдает полотно на оцинковку, разматывая гармошку из этого агрегата.
После размотки и сваривания, сталь попадает вот в эту огромную космическую машину. Какие есть предположения что это такое?
Это огромная печь. Здесь листовой металл нагревают до 800 градусов. Фактически, это состояние, близкое к температуре плавления, но не доходящее до нее. Так сказать «Вот-вот. »
И прямиком из разогретой природным газом печи лист металла попадает в ванную с жидким цинком.
Скорость движения стали через ванную определяется компьютером с заданной программой согласно требуемой марке оцинковки. На выходе из бассейна свежеоцинкованную сталь обдувают сильным потоком воздуха, охлаждая ее.
И дальше лист уходит далеко под потолок, охлаждаться во время пути на линию контроля
После охлаждения сталь спускается на контрольный пост, где автоматика контролирует соблюдение программы оцинковки, толщину слоя, края листа и другие критически важные параметры.
Помимо датчиков, полотно проходит и визуальный контроль. Это делает камера, способная разглядеть брак, и человек — контролирующий картинку с камеры.
После того, как оцинкованная сталь пройдет контроль, она снова сматывается в рулоны и разрезается в тех же местах, где полотно сваривали в начале.
Остается упаковать рулоны, а также нанести маркировку заказчика.
Интересно, что разные заказчики предъявляют различные требования к упаковке. Как правило, это зависит от способа дальней транспортировки (только ж/д по территории России или дальнейшая транспортировка морем с большим количеством циклов погрузки/разгрузки). Наиболее уязвимыми являются торцы рулонов, которые могут повредиться от контактов вплоть до сильного замятия, что приведет весь рулон в негодность
Как я уже говорил выше, Северсталь поставляет оцинкованную сталь для таких концернов, как Renault-NISSAN, VOLKSWAGEN, HYUNDAI-KIA, Ford, GM и др. Например, этот рулон уходит в Питер, на завод HYUNDAI-KIA
Санкции санкциями, а бизнес есть бизнес. Этот рулон уходит в США. Кстати, помимо российского автопрома, череповецкая оцинкованная сталь уходит и на белорусский МАЗ, и на украинский ЗАЗ. А еще продукцию Северстали можно встретит в каждом пятом пластиковом окне (там внутри идет металлическое армирование). Стадион «Открытие арена», башни Москвы Сити и даже Дворцовый мост в Санкт-Петербурге строились и реконструировались с использованием металла, произведенного в этих станах. Ну и. Северсталь поставляет готовые трубы для строительства заопровода «Сила Сибири».
После того, как сталь упакована и маркирована, ее отправляют на склад. На помощь приходит специальный кран-рука, операторами которого являются исключительно девушки
Будущие автомобильные кузова, готовые к отправке заказчикам

Перевозят рулоны с оцинкованной сталью в специальных крытых выгонах, которые больше похожи на нечто секретно-военное.
Все тот же кран-рука с девушкой за рычагами укладывает рулоны в вагон, размещая их равномерно по всей площади, а затем накрывает зеленой металлической крышкой.
И все, металл поедет в разные концы России и не только, где из него произведут готовую продукцию. Так что, если вы ездите на автомобиле, собранном в России, его кузов, с большой долей вероятности, часть своего пути прошел именно в этих стенах и именно на этой линии.

ДЛЯ изготовления деталей кузовов и кабин автомобилей в основном применяются листовые материалы.

Выбор материала является важным фактором, обеспечивающим качество кузовов автомобилей. К листовым материалам предъявляются следующие требования:

материал должен обеспечивать прочность детали в узле и обладать необходимыми пластическими свойствами для штамповки детали заданной формы;

толщина материала должна быть достаточной для обеспечения необходимой прочности детали после пластического деформирования при штамповке;

материал должен обеспечивать качественное выполнение других технологических процессов изготовления кузовов и кабин (сварка, окраска и т. п.);

номенклатура толщин, марок и размеров применяемого листового и рулонного материала должна быть возможно меньшей.

Основным кузовным материалом является тонколистовая низкоуглеродистая качественная сталь, изготавливаемая методом холодной прокатки. Преобладающие толщины используемых сталей находятся в диапазоне 0.6.—1,5 мм. Марки, свойства и сортамент сталей регламентируются следующими стандартами:

1. ГОСТ 9045-93. Прокат тонколистовой холоднокатаный из низкоуглеродистой качественной стали для холодной штамповки. Технические условия;

2. ГОСТ 16523-97. Прокат тонколистовой из углеродистой стали качественной и обыкновенного качества общего назначения. Технические условия;

3. ГОСТ 19904-90. Прокат листовой холоднокатаный. Сортамент.

Листовая сталь по ГОСТ 9045 — 93 применяется для наиболее сложных и ответственных деталей, в том числе и для облицовочных (наружных) деталей кузова. Стальной прокат подразделяют: 355

1) по виду продукции;

2) по нормируемым характеристикам;

3) по качеству отделки поверхности;

4) по способности обрабатываться штамповкой-вытяжкой.

По виду продукции прокат подразделяется на листы и рулоны.

По нормируемым характеристикам прокат делится на пять категорий, каждая из которых определяет характеристики механических свойств, регламентируемые при поставке проката по данной категории.

К нормируемым характеристикам относятся предел текучести ат, временное сопротивление ав, относительное удлинение 5, твердость по Роквеллу, глубина сферической лунки, формуемой на листовом образце до его разрушения специальным инструментом (испытание по методу Эриксена).

Подразделение по видам продукции и по качеству отделки поверхности такое же, как проката по ГОСТ 9045-93.

Стандарт на сортамент (ГОСТ 19904-90) распространяется на листовой холоднокатаный прокат шириной 500 мм и более, изготавливаемый в листах толщиной от 0,35 до 5,0 мм и рулонах толщиной от 0,35 до 3,5 мм. Стандарт устанавливает ряд размеров проката по толщине, ширине и длине, предельные отклонения этих размеров, плоскостность проката, характер кромки (обрезная, необрезная) и регламентирует другие характеристики проката (волнистость, серповидность, телескопичность и др.).

Из какого марки металла делают автомобили. Материалы, из которых производят кузов современного автомобиля

Из какого марки металла делают автомобили. Материалы, из которых производят кузов современного автомобиля

Добрый день, сегодня мы расскажем о том, из чего изготавливают автомобильный кузов , какие материалы применяют при производстве , а также при помощи, каких технологий осуществляется этот важный процесс. Кроме того, узнаем, какие существуют основные разновидности металлов , пластика и прочих материалов , которые зачастую используются при производстве элементов кузова транспортного средства, а также рассмотрим, какими преимуществами с недостатками обладает то или иное сырье в отдельности каждого вида . В заключении мы поговорим о том, какой материал на сегодняшний день является самым востребованным у автопроизводителей , а также от чего зависит качество и долговечность готового кузова машины.

КАК СОБИРАЮТ АВТОМОБИЛИ LEXUS И TOYOTA

ЧТО ТАКОЕ КРУПНОУЗЛОВАЯ СБОРКА АВТОМОБИЛЕЙ

Кузов любого автомобиля играет роль несущей конструкцией , в котором использовано при производстве огромное многообразие различных материалов и комплектующих . Чтобы кузов машины отслужил свой срок службы надежно, а также качественно, необходимо понимать, как за ним правильно следить и эксплуатировать . Чтобы это понимать, нужно знать из чего изготовлена несущая конструкция транспортного средства, а также какая технология сварки и производства применялась. Благодаря этой информации , мы сможем без труда определить преимущества и недостатки того или иного типа кузова .

Справочно заметим, что для изготовления кузова нужны сотни отдельно взятых запасных частей , компонентов и деталей , которые затем необходимо очень точно , а также грамотно соединить в единую конструкцию , которая будет объединять в себе все элементы транспортного средства. Чтобы изготовить прочный , при этом безопасный , легкий и по приемлемой стоимости кузов современного автомобиля, нужно постоянно искать различные компромиссы , а также новые технологии с материалами .

1. Изготовление кузова автомобиля из стали. Преимущества и недостатки

Большинство кузовов автомобиля, а точнее его детали изготавливается из разных сортов стали , алюминиевых сплавов и даже пластмассы с добавлением стекловолокна . Но основным материалом на сегодняшний день все же выступает низкоуглеродистая листовая сталь с примерной толщиной в 0,7-2 миллиметра . Благодаря использованию тонкого листа стали , автопроизводителям удалось уменьшить общую массу транспортного средства и при этом увеличить жесткость кузова .


Высокая прочность кузова получается благодаря специальным свойствам и составу стали , а также его способностью к глубокой вытяжке , то есть можно изготавливать детали сложных форм . Кроме того, нельзя забывать, что новые технологии в сварке помогают получать высокотехнологичные соединения . Однако сталь обладает высокой плотностью и слабой коррозионной стойкостью , поэтому такой материал требует специальных дополнительных мероприятий для защиты от коррозии .


В процессе создания кузовов из стали , задача конструкторов заключается в том, чтобы наделить материал прочностью и обеспечить высокий уровень пассивной безопасности . Задача технологов заключается в правильном подборе состава стали , его сочетание с другими сплавами и компонентами , чтобы материал был хорошо штампуем . Задача же металлургов заключается в том, чтобы правильно отлить нужную по составу и качеству сталь . Справочно заметим, что ежегодно разрабатываются десятки новых сортов и марок стали , которые позволяют упростить производство , а также получить заданные специалистами свойства несущей конструкции транспортного средства.


Как правило, изготовление кузова происходит в несколько стадий производственного процесса . Первоначально происходит изготовление , а затем прокатка стальных листов , которые обладают разной толщиной . После этого листы подвергают штамповке для создания определенных деталей машино-комплекта . На заключительной стадии готовые отштампованные детали свариваются специальным методом и собираются в единый несущий узел , он же кузов . Справочно заметим, что почти вся сварка на автозаводах производится специальными высокоточными роботами .


Положительные стороны стали при производстве автомобильных кузовов :

низкая стоимость материала в сравнении с другим сырьем ;

— четко отработанная технология изготовлени я и утилизации материала;

оптимальная ремонтопригодность готового кузова .


Отрицительные стороны стали при производстве автомобильных кузовов :

высокая масса материала и готового кузова ;

потребность в специальной штамповке и большом количестве штампов для скрепления деталей;

не высокий срок службы готового кузова .


Что касается негативных сторон при производстве кузова из стали , то благодаря постоянному совершенствованию технологий изготовления автомобильных деталей , а также процесса штамповки , данный материал становится наиболее оптимальным для автопроизводителей. На сегодняшний день, доля высокопрочных сталей в структуре кузова постоянно увеличивается . Сегодня большинство автопроизводителей применяют сверхвысокопрочные сплавы стали нового поколения .

К таким видам материала относят такую марку стали , как TWIP , которая содержит большое количество марганца в своем составе , доля вещества может доходить до 25 процентов . Сталь такого типа обладает высокой пластичностью , устойчивостью к частым деформациям , благодаря чему материал можно подвергать относительному удлинению . Удлинение «ТВИП-стали » может происходит на 50-70 процентов , а пределом прочности служит показатель в 1450 МегаПаскаль . Для сравнения , прочность обычной стали составляет не более 250 МегаПаскаль , а высокопрочной до 600 МегаПаскаль .

2. Изготовление кузова автомобиля из алюминия. Преимущества и недостатки

Что касается автомобильных кузовов из алюминиевых сплавов , то их стали производить совсем недавно, примерно около 15 лет назад, для промышленности это считается маленьким сроком. Как правило, алюминий в автомобилестроении применяют для изготовления отдельных частей кузова , реже всего целиком. В большинстве случаев алюминий используется для производства капотов , крыльев , дверей , крышки багажника , а также прочих элементов и деталей .


Автопроизводителями на сегодняшний день сплавы из алюминия используются в ограниченном количестве. Все это из-за того, что жесткость и прочность алюминиевых сплавов намного ниже, чем у той же стали . В связи с чем толщину деталей из этого материала производители увеличивают , поэтому значительного снижения массы готового кузова получить почти невозможно. Кроме того, такой параметр , как шумоизоляция у алюминиевых деталей также хуже, чем у элементов из стали , к тому же при производстве требуются более сложные процедуры , чтобы достичь оптимального акустического эффекта и добиться положительных характеристик кузова по этому показателю .


Что касается производственного процесса, на котором изготавливают готовый алюминиевый кузов , то он очень схож с ранее описанной процедурой создания несущей конструкции из стали . На первой стадии , детали из листа алюминия подвергают штамповке , а затем собираются в единый цельный узел . При сварке применяется аргон , детали соединяются при помощи специальных заклепок или клея . На завершающей стадии , основные участки будущего кузова подвергают точечной сварке , а затем к стальному каркасу , изготовленному из труб разного сечения , прикрепляются кузовные панели и машино-комплекты .


Положительные стороны алюминия при производстве автомобильных кузовов :

Появляется возможность производства кузовных элементов любой формы и сложности ;

масса готового алюминиевого кузова значительно легче стального , при равной прочности ;

— материал легко подвергается обработке , процесс утилизации прост;

— высокая устойчивость к коррозии и ржавчине ;

низкая стоимость технологических процессов при производстве.


Отрицительные стороны алюминия при производстве автомобильных кузовов :

Высокая сложность ремонта деталей;

— при производстве используются дорогостоящие крепежи для соединения панелей ;

— необходимость наличия специального высокоточного оборудования ;

— намного дороже стали , в связи с высокими энергозатратами .


Алюминий обладает средней пластичностью иустойчивостью к разного рода деформациям . Такой материал не рекомендуется подвергать удлинению ,в связи с тонкой номинальной толщиной . Пределом прочности алюминия служит показатель в 180-210 МегаПаскаль . Для сравнения , прочность стандартной стали составляет около 240-250 МегаПаскаль , а высокопрочной в районе 500-600 МегаПаскаль .

3. Изготовление кузова автомобиля из стеклопластика и пластмассы. Преимущества и недостатки

Что касается производства кузова из стеклопластика , то имеется в виду такой материал , как волокнистый наполнитель , который специально пропитывается полимерными смолами . Как правило, материал такого вида используется для облегчения общей массы готового кузова . Самыми известными наполнителями , он же стеклопластик являются стеклоткань , кевлар и карбон .


Справочно заметим, что примерно 85 процентов пластмасс , которые применяются в автомобилестроении , приходятся на 5 основных видов материалов , такие как полиуретаны , поливинилхлориды , ABS-пластик , полипропилены и стеклопластики . Около 15 оставшихся процентов приходится на полиэтилены , полиакрилаты , полиа миды , поликрбонаты и прочие материалы.


Кроме того, из разных видов стеклопластика производят наружные панели кузовов , что в свою очередь обеспечивает значительное снижение массы готового транспортного средства. Например из полиуретана изготавливают подушки и спинки сидений , накладки противоударного типа и прочие компоненты . Буквально, как пару лет назад из стеклопластика начали в массовом порядке производить такие элементы кузова , как капоты , крылья , двери и крышки багажников .


Положительные стороны стеклопластика при производстве автомобильных кузовов :

Имея высокую прочность , деталь имеет небольшой вес ;

внешняя поверхность элементов обладает оптимальными декоративными параметрами ;

простота изготовления элементов, которые имеют сложную форму ;

Имеется возможность производства деталей крупных размеров .


Отрицательные стороны стеклопластика при производстве автомобильных кузовов :

— сравнительно высокая цена на наполнители ;

высокие требования к точности форм , разметке и готовой детали ;

производство деталей осуществляется продолжительное время;

Высокая сложность в ремонте при повреждении деталей.


Справочно заметим, что довольно часто такие материалы, как поливинилхлориды используются для производства фасонных деталей , например рукояток , панелей приборов и прочие элементы. Зачастую поливинилхлориды применяют совместно с обивочными материалами , на примере разных тканей . Что касается полипропилена , то из него часто изготавливают корпуса фар , рулевые колонки , воздуховоды и прочие элементы. ABS-пластик используют для облицовки деталей , как интерьера , так и экстерьера автомобиля.

Видео обзор: «Из чего изготавливают кузов автомобиля. Какие материалы используются при производстве»

В заключении отметим, что автомобильная промышленность сегодня не стоит месте и старается развиваться лицом к покупателю, который хочет динамичную , экономичную , надежную , безопасную и при этом недорогую машину. Все это ведет автомобилестроение к тому, что в производстве транспортных средств применяются новые технологии и материалы , которые отвечают современным требованиям , а также стандартам .

БЛАГОДАРИМ ВАС ЗА ВНИМАНИЕ. ПОДПИСЫВАЙТЕСЬ НА НАШИ НОВОСТИ. ДЕЛИТЕСЬ С ДРУЗЬЯМИ.

6.2. Из чего делают кузова автомобилей

Ни в одном другом элементе легкового автомобиля не использовано так много разнообразных материалов, как в кузове. Это конструкционные, отделочные, изолирующие и другие типы материалов.

Основные детали кузова изготовляют из стали, алюминиевых сплавов, пластмасс и стекла. Причем предпочтение отдается низкоуглеродистой листовой стали толщиной 0,6. 2,5 мм. Это вызвано ее высокой механической прочностью, недефицитностью, способностью к глубокой вытяжке (можно получать детали сложной формы), технологичностью соединения деталей сваркой и т. д. Недостатками этого материала являются очень высокая плотность (поэтому кузова получаются тяжелыми) и низкая коррозионная стойкость, требующая сложных и дорогостоящих мероприятий по защите.

Алюминиевые сплавы применяются в кузовостроении пока еще в ограниченном количестве. Поскольку прочность и жесткость этих сплавов ниже, чем у кузовной стали, поэтому толщину деталей приходится увеличивать и существенного снижения массы кузова получить не удается. Кроме того, шумоизолирующая способность алюминиевых деталей ниже, чем стальных, и требуются более сложные мероприятия для достижения необходимой акустической характеристики кузова. Учитывая высокую теплопроводность материала и образование на его поверхности окислов алюминия с высокой температурой плавления, для сварки алюминиевых деталей необходимо применять более мощное и дорогое оборудование.

И тем не менее известны примеры широкого использования алюминия в кузовах легковых автомобилей. Еще в 50-е гг. во Франции выпускался автомобиль «Панар-Дина» с кузовом из алюминиевого сплава, а позже автомобиль «Ситроен ZXS-19». имел алюминиевую крышу. Есть основания полагать, что по мере улучшения физико-механических свойств алюминиевых сплавов, решения технологических и других вопросов эти материалы займут достойное место в кузовостроении.

Около 80% пластмасс, применяемых в автомобилях, приходится на пять типов материалов: полиуретаны, поливинилхлориды, полипропилены, АБС-пластики, стеклопластики. Остальные 20% составляют полиэтилены, полиамиды, полиакрилаты, поликарбонаты и др.

Из стеклопластиков изготовляют наружные панели кузовов, что обеспечивает существенное уменьшение массы автомобиля. Так, кузов легкового автомобиля «Корвет» модели 1984 г. на 113 кг легче аналогичного стального.

Из полиуретановой пены делают подушки и спинки сидений, противоударные накладки и т. д. Сравнительно новым направлением является применение этого материала для изготовления крыльев, капотов, крышек багажника и т. д.

Поливинилхлориды применяют для изготовления многих фасонных деталей (щиты приборов, рукоятки и т. д.) и обивочных материалов (ткани, маты и т.д.). Из полипропилена делают корпуса фар, рулевые колеса, перегородки и многое другое. АБС-пластики используют для различных облицовочных деталей.

Количество стекла в кузовах автомобилей неуклонно увеличивается. Это объясняется стремлением улучшить обзорность, придать автомобилю более эстетичный вид. В основном применяют неорганические стекла. Прозрачность их зависит от качества обработки поверхности (неполированные или полированные), а механические характеристики — от термообработки (незакаленные или закаленные). После закалки стекло нельзя резать или сверлить. В случае удара оно дробится на мелкие кусочки с тупыми краями, поэтому такое стекло называют безопасным. Закаленное стекло имеет толщину 3. 6 мм.

Безопасные стекла можно получить склеиванием, например, двух листов неорганического тонкого стекла прозрачной пленкой из полиметилакрилата или полнацетата. Получается безосколочное прочное стекло, называемое триплексом. При сильном ударе такие стекла распадаются на осколки, удерживаемые на промежуточном слое толщиной 0,4. 0,8 мм. (Стекла с более толстым промежуточным слоем обладают высокой прочностью при изгибе и ударах.)

Органические (полимерные) стекла обладают высокой прозрачностью, легко окрашиваются, способны задерживать инфракрасные лучи — (препятствуют нагреву салона солнечными лучами). Однако они обладают и весьма существенным недостатком — легко царапаются. Изготавливают такие стекла из поликарбоната или метилметакрилата.

Основным материалом для производства автомобиля является сталь. Действительно, ведь стали обладают достаточной конструкционной прочностью, небольшой ценой, а также могут использоваться в разных технологических процессах: они легко штампуются или свариваются. Но у сталей есть и недостатки. Главный из них – низкая стойкость к коррозии, что вынуждает конструкторов применять для защиты кузова специальные защитные покрытия. Кроме того, стальная деталь имеет большую массу. Поэтому в конструкции автомобилей нашли широкое применение алюминиевые сплавы, пластмассы и композитные материалы.

Это обусловлено стремлением снизить уязвимость кузовов автомобилей к коррозии, а также уменьшить общую массу автомобиля, что благоприятно влияет на экономичность и управляемость. Тем не менее листовые стали не сдают свои позиции, так как стоимость алюминиевых, а уж тем более композитных материалов гораздо выше. На крупных автомобильных заводах за сутки может перерабатываться свыше 1 000 тонн листовых сталей, которые идут на изготовление широкого ассортимента автомобильных деталей. Но давайте взглянем на другие материалы, которые могли бы заменить сталь в производстве автомобилей.

Дерево

Начать наш обзор справедливо с дерева. Этот материал стоял у истоков автомобилестроения и до массового применения стали широко использовался в автомобилях. Деревянные доски или просто фанера часто шли на применение в кузовах легковых автомобилей, и прочих утилитарных конструкциях.

Отдельно стоит сказать о роскошных автомобилях – богатые владельцы обращались к кузовным ателье, в которых творили поистине произведения искусства. Панели кузовов выполнялись из лакированного дерева ценных пород, а салон обшивался дорогим сафьяном или шелком.

Особняком здесь стоит уникальная Hispano-Suiza Н6С, построенная в 1924 году гонщиком Андре Дюбоннэ. Ее двигатель с несколькими карбюраторами рабочим объемом почти в 8 литров развивал 200 л.с., но для настоящего гоночного автомобиля был нужен легкий кузов. Дефицитных в те годы легких сплавов магния или алюминия Дюбоннэ не достал, а потому обратился в авиастроительную компанию Nieport с просьбой постройки легкого кузова.

Машина, впоследствии ставшая известной под именем Tulipwood, имела набранный из 20-миллиметровых шпангоутов каркас, на который с помощью медных заклепок крепились планки разных длины и ширины, изготовленные, вопреки имени, из древесины красного дерева махагони, в то время как древесина тюльпанного дерева очень плохо гнется и склонна к раскалыванию, что не позволяет применять ее в строительстве кузовов.

После установки всех деталей машину покрыли несколькими слоями лака и отполировали. Вся нижняя часть рамы для улучшения обтекаемости и защиты от ударов была закрыта алюминиевым кожухом. Сзади для лучшей развесовки разместили 175-литровый бензобак.

Андре Дюбоннэ поучаствовал на своей «деревяшке» в одной гонке – Тарга Флорио, где финишировал в итоге седьмым. После гонки он оставил автомобиль для повседневных поездок, а позднее тот попал в Америку и сохранился до наших дней в одном из калифорнийских автомобильных музеев.

Во время Второй мировой войны вся сталь уходила на нужды фронта, и большинство автомобилей стало оснащаться простыми деревянными кузовами типа фаэтон или универсал. Серийное производство автомобилей с деревянными кузовами продолжалось и после войны, особенно массово это явление получило развитие в Америке. И если в Европе и СССР к 50-м годам парк автомобилей имел стальные кузова, то американские автомобилисты не могли избавиться от привычки ездить на деревянной машине. Панели кузовов кабриолетов выполняли из красного дерева и лакировали, но в 60-е годы от деревянного кузова, который имел свойство рассыхаться, был пожароопасен и попросту небезопасен, стали отказываться. А впоследствии вплоть до 80-х годов на многих американских универсалах и джипах имелась виниловая графика с отделкой «под дерево».

Такие машины особенно популярны благодаря американским фильмам 80-90-х годов, где граждане Штатов путешествовали по стране на универсалах. Сейчас ясеневые рамы используют для своих машин англичане из фирмы Morgan, да в одном из поколений , но полноценного автомобиля, выполненного целиком из дерева, современная промышленность уже не выпускает.

В 2007 году американский энтузиаст Джо Хармон представил на тюнинг-шоу в Эссене среднемоторный суперкар Splinter, к постройке которого он приступил еще будучи студентом. На постройку суперкара ушло пять лет, причем все строилось своими силами и средствами. Кузов среднемоторной «Щепки» создан из древесины вишни и бальсы, а за спиной водителя разместился семилитровый двигатель V8 от Chevrolet Corvette, развивающий свыше 700 л.с. Из металла также сделаны и коробка передач, усилители кузова, амортизаторы, рычаги задней подвески и тормоза. А вот передняя подвеска получила деревянные (!) рычаги, а металлического в колесах – только алюминиевые ступицы и обода. В результате масса двухместного автомобиля достигла 1 360 кг, а по заявлениям авторов максимальная скорость Splinter в теории может достигать 380 км/ч, однако испытания не проводились. Впрочем, для автора этого достаточно: машину он расценивает как воплощение своей детской мечты и даже не помышляет хотя бы о мелкосерийном производстве.

Бамбук

Отдельно расскажем о единственном концепт-каре, который применил в своей конструкции… бамбук. Автомобиль, получивший название Ford MA, был показан на выставке Индустриального дизайна в 2003 году. Имя было выбрано как заключение идей, заложенных в азиатской философии «пространство между» применительно к автомобилю, выражаемое в том, что Ford MA является средоточием между эмоциями, искусством и наукой. Разработанный на компьютере родстер, выдержанный в минималистичном стиле, использует в своей конструкции бамбук, алюминий и углепластик, а задние колеса приводит в движение электромотор, но создателями допускается и установка небольшого бензинового моторчика. Родстер ориентирован на молодых людей, которые хотят найти свежие интерпретации автомобилей. Кстати, в машине нет сварных швов: все элементы соединены между собой с помощью 364 титановых болтов, а это означает, что такие родстеры можно легко собирать дома как конструктор из почти 500 деталей.

В разоренной послевоенной Европе начали возникать сложности c поиском замены дефицитной стали, которой с трудом хватало на грузовики и автобусы. Поэтому широкое распространение у автомобильных производителей получили простенькие и дешевые мотоколяски наподобие BMW Isetta и Messerschmitt Kabinroller, которые имели три колеса, двухтактный мотор и крошечные размеры. Впрочем, покупатели не жаловались – машина стоила совсем немного, а уж благодаря Изетте мы вообще сейчас знаем марку BMW.

В таких условиях чехи Франтишек и Моймир Странские реализовали свою собственную идею бюджетного трехколесного автомобиля для народа. Первый прототип был создан братьями в 1943 году, получил имя Oskar (акроним от чешского «osa kara» – буквально «тележка на оси») и имел трубчатую раму, обшитую алюминиевыми листами. Спереди у машины было два колеса, соединенных с помощью рулевой рейки, а на одно заднее приходился цепной привод от мотоциклетного мотора.

В серийное производство автомобиль был запущен в 1950 году и получил имя Velorex. Алюминиевые листы были в те годы стратегическим сырьем, и братьям пришлось срочно искать замену. Сталь не подходила: снабженный 250-кубовым двигателем от Явы Velorex 16/250 был очень ограничен в динамике, а стальной кузов сильно увеличивал массу машины, поэтому на раму натянули практичный и непромокаемый дерматин.

В разные годы 80 рабочих фабрики братьев Странских собирали до 400 автомобилей в год, а производство завершилось к 1973 году. Большинство Велорексов уходило в органы соцобеспечения, где полученные машины передавались людям с ограниченными возможностями. Переделанные в легкие грузовички, автомобили широко использовались как технологический транспорт на крупных промышленных предприятиях, а некоторое количество продавалось и в широком доступе. Благодаря своей простоте и неприхотливости машина пользовалась популярностью в сельской местности, ее охотно покупали агрономы и сельские врачи.

Velorex постоянно модернизировался, машина получала все более мощные двигатели. Например, выпускались модели с 175-, 250- и 350-кубовыми двигателями от Явы, а позднее появился динамостартер и гидропривод сцепления, облегчивший жизнь владельцев машины. Интересный факт: заднего хода как такового у Велорекса не существовало – чтобы поехать назад, нужно было остановить двигатель и запустить его так, чтобы коленчатый вал вращался в обратном направлении.

В современном автомире кожа, как видно, не слишком часто встречается на кузовах автомобилей: сейчас кузовные панели затягивают в нее только тюнинг-ателье по заказу своих клиентов.

Ткань

Но не кожей единой пользовались автомобильные конструкторы. Например, в середине 80-х годов в Белорусской академии художественных искусств была создана примитивная мотоколяска, в основу которой легла трубчатая рама, на которую натянули… ткань.

Вообще, ткань как таковая имеет место в конструкции кузовов и по сей день: стоит вспомнить любой автомобиль-кабриолет с мягким складным матерчатым верхом. Но то только верх, а другое – весь кузов. И из нее делали не только мотоколяски, а вполне себе крупные автомобили. Чего только стоит построенный безымянным механиком фирмы Chris-Craft Motor Boats из Сан-Франциско в 1937 году американский автомобиль-кемпер Himsl Zeppelin Roadliner. В качестве основы использовали лонжеронную раму от универсала Plymouth (история умалчивает, какого именно), куда прикрепили отдельный трубчатый каркас, обтянутый авиационной тканью – перкалью. Этот материал, хоть и достаточно прочный, все-таки потребовал металлических бамперов и рам-усилителей вокруг окон.

В салоне установили два дивана-кровати, столик и даже газовую плиту. После постройки автомобиль долгое время находился у местного врача, успешно пережил войну, и в 1968 году в окрестностях города Конкорд в штате Калифорния на машину наткнулись двое друзей-реставраторов – Арт Химсл и Эд Грин. Она была приведена в чувства и долгие годы служила друзьям передвижным офисом.

В 1999 году Химсл и Грин провели комплексную реставрацию машины. Древний карбюраторный двигатель Плимута отправили на свалку, а его место занял более мощный V8 от современного Chevrolet Camaro, тканевую обшивку заменили на поливолокно, которое применяют при строительстве легких самолетов, перешили салон и в довершение всего установили пневмоподвеску.

Говоря о тканевых автомобилях, нельзя не вспомнить о современном концепте родстера BMW, получившем имя GINA. По словам главного дизайнера проекта Криса Бэнгла – человека, создавшего современный стиль автомобилей баварской марки, – имя GINA – это аббревиатура от «Geometry and Functions In «N» Adaptions», то есть «возможность многочисленного изменения форм кузова».

При создании автомобиля разработчики задали несколько вопросов. Почему кузова автомобилей делаются обязательно из пластика или металлов? Может ли владелец настроить все в своей машине так, как хочется именно ему? Ответом на эти вопросы стала… натянутая на каркас кузова эластичная ткань, разработанная в американском подразделении BMW. Сам каркас представляет собой множество металлических трубок, которые могут перемещаться с помощью гидравлических приводов. Так, владелец может одним нажатием клавиши открывать/закрывать фары и щель на капоте для обозрения мотора и менять форму ребер на боковинах, а в салоне – настраивать подголовники или менять комбинацию приборов.

Конечно, перспектив серийного выпуска похожих на Джину автомобилей в ближайшем будущем нет, но конструкторы считают, что у таких тканевых кузовов большое будущее. По словам все того же Бэнгла, ткань может дать разработчикам меньшее количество ограничений в дизайне, позволяет придать кузову аэродинамически правильную форму и защитить внутренние узлы кузова, а возможно, и перевернуть представления о конструкции автомобиля. Ведь легким движением руки будущий покупатель сможет изменить форму кузовных деталей на ту, что больше всего подходит его запросам.

Конопля

Вообще ткани всегда интересовали конструкторов с точки зрения выпуска композитных материалов – ведь они легче и не поддаются коррозии, а их производство дешевле. В качестве основы использовались натуральные тканевые волокна, несколько слоев которых пропитывались эпоксидной смолой.

Первым в мире автомобилем с кузовом из композитов стал Soybean Car («Соевый автомобиль»), сконструированный как эксперимент компанией Ford и представленный в августе 1941 года. Также он известен под именем «Hemp body car» («Автомобиль с кузовом из конопли»). В качестве основы для машины использовали рамное шасси и силовой агрегат от седана Ford V8, а внешние панели выполнили из пластика, в котором наполнителями стали конопляное волокно и соевые бобы. Всего панелей было 14, и все они крепились к раме с помощью болтов, это позволило удержать массу машины на уровне 850 кг, что примерно на 35 процентов меньше, чем у прототипа. V-образную карбюраторную «восьмерку» перевели на питание биоэтанолом, полученным из всё той же конопли. Работы по автомобилю закончились после вступления США во Вторую мировую, а впоследствии автомобиль был уничтожен.

Натуральные волокна в качестве наполнителя будоражили умы конструкторов машин еще долгое время. Например, известный немецкий автомобиль Trabant имел кузов из композитного материала «дуропласт». Здесь наполнителем являлись отходы советского хлопкового производства – очёсы, которые заливались все той же эпоксидной смолой. Шутники советовали владельцам «Траби» остерегаться коз, свиней и гусениц, в ожидании того, что их «хлопковый пластик» мог быть попросту съеден. Тем не менее такой материал не гнил и обеспечивал небольшую массу машинке, снабженной двухтактным моторчиком в 25 л.с.

Но и это не было концом. В 2000 году компания Toyota представила концептуальный автомобиль Toyota ES3 – компактный городской автомобиль с алюминиевым кузовом, внешние панели которого выполнены из специального полимера TSOP (Toyota Super Olefin Polymer). Этот материал использует в качестве сырья лен, бамбук и даже… картофель и легко поддается переработке. Широкого распространения он так и не получил – наверняка из-за нежелания владельцев иметь машины из переработанной картошки.

Из железа. Причем, практически все автомобили, которые собираются в России, делаются из российского железа. В первую очередь, это кузова, сталь для которых делают на российских металлургических заводах. Сегодня я покажу, как делают оцинкованную сталь на Череповецком металлургическом комбинате «Северсталь», основным потребителем которой является как раз отечественный автопром. Нужно понимать, что именно здесь закладывается тот запас прочности и коррозийной устойчивости, которые будут определять длительность и беспроблемность эксплуатации автомобилей в суровых российских условиях и именно поэтому оцинковочный цех является лицевым участком Череповецкого меткомбината. Попадая сюда из других цехов, просто поражаешься стерильной, чуть ли не медицинской чистоте, гостеприимуству и практически полной автоматизации процесса. Сразу видно, что все здесь оснащено по последнему слову техники и понятно, почему именно в цех оцинковки осуществлял свой визит В.В. Путин во время посещения Северстали в феврале 2014 года. Итак, как же оцинковывают сталь для наших автомобилей? На склад оцинковочного цеха сталь приходит в рулонах. Они разной толщины и длины и эти параметры зависят от заказчика. Естественно, каждая партия под каждого заказчика оцинковывается по разным программам и с разными параметрами. На сегодняшний день предприятие про50 марок горячеоцинкованного листового металла толщиной 0,4 – 2,0 мм и шириной от 900 до 1850 мм для отечественного автопрома и международных автомобильных концернов: Renault-NISSAN, VOLKSWAGEN, HYUNDAI-KIA, Ford, GM и др. Некоторые марки оцинкованного листа выпускаются и поставляются на автопредприятия в России только Череповецким металлургическим комбинатом.
Рядом с рулонами стали можно увидеть огромные. -кн чушки с цинком, который будут «женить» с листовой сталью в специальной ванной (но об этом чуть ниже)
Сначала рулоны стали разматывают, а затем сваривают, чтобы получить непрерывное полотно. Делается это при помощи специальной хитрой машины, которая позволяет сделать процесс непрерывным, несмотря на то, что для процесса сварки необходимо на короткое время останавливать конвейер. Кстати, линию по производству горячеоцинкованного листа спроектировала бельгийская фирма «CMI», а ввели ее в эксплуатацию в 2005 году.
Делается это при помощи специального накопителя в виде подвижной гармошки. Как вы понимаете, для того, чтобы соединить концы двух рулонов, нужно сделать паузу. А процесс оцинковки непрерывен. Для этого и создан накопитель: он выдает полотно на оцинковку, разматывая гармошку из этого агрегата.
После размотки и сваривания, сталь попадает вот в эту огромную космическую машину. Какие есть предположения что это такое?
Это огромная печь. Здесь листовой металл нагревают до 800 градусов. Фактически, это состояние, близкое к температуре плавления, но не доходящее до нее. Так сказать «Вот-вот. »
И прямиком из разогретой природным газом печи лист металла попадает в ванную с жидким цинком.
Скорость движения стали через ванную определяется компьютером с заданной программой согласно требуемой марке оцинковки. На выходе из бассейна свежеоцинкованную сталь обдувают сильным потоком воздуха, охлаждая ее.
И дальше лист уходит далеко под потолок, охлаждаться во время пути на линию контроля
После охлаждения сталь спускается на контрольный пост, где автоматика контролирует соблюдение программы оцинковки, толщину слоя, края листа и другие критически важные параметры.
Помимо датчиков, полотно проходит и визуальный контроль. Это делает камера, способная разглядеть брак, и человек — контролирующий картинку с камеры.
После того, как оцинкованная сталь пройдет контроль, она снова сматывается в рулоны и разрезается в тех же местах, где полотно сваривали в начале.
Остается упаковать рулоны, а также нанести маркировку заказчика.
Интересно, что разные заказчики предъявляют различные требования к упаковке. Как правило, это зависит от способа дальней транспортировки (только ж/д по территории России или дальнейшая транспортировка морем с большим количеством циклов погрузки/разгрузки). Наиболее уязвимыми являются торцы рулонов, которые могут повредиться от контактов вплоть до сильного замятия, что приведет весь рулон в негодность
Как я уже говорил выше, Северсталь поставляет оцинкованную сталь для таких концернов, как Renault-NISSAN, VOLKSWAGEN, HYUNDAI-KIA, Ford, GM и др. Например, этот рулон уходит в Питер, на завод HYUNDAI-KIA
Санкции санкциями, а бизнес есть бизнес. Этот рулон уходит в США. Кстати, помимо российского автопрома, череповецкая оцинкованная сталь уходит и на белорусский МАЗ, и на украинский ЗАЗ. А еще продукцию Северстали можно встретит в каждом пятом пластиковом окне (там внутри идет металлическое армирование). Стадион «Открытие арена», башни Москвы Сити и даже Дворцовый мост в Санкт-Петербурге строились и реконструировались с использованием металла, произведенного в этих станах. Ну и. Северсталь поставляет готовые трубы для строительства заопровода «Сила Сибири».
После того, как сталь упакована и маркирована, ее отправляют на склад. На помощь приходит специальный кран-рука, операторами которого являются исключительно девушки
Будущие автомобильные кузова, готовые к отправке заказчикам

Перевозят рулоны с оцинкованной сталью в специальных крытых выгонах, которые больше похожи на нечто секретно-военное.
Все тот же кран-рука с девушкой за рычагами укладывает рулоны в вагон, размещая их равномерно по всей площади, а затем накрывает зеленой металлической крышкой.
И все, металл поедет в разные концы России и не только, где из него произведут готовую продукцию. Так что, если вы ездите на автомобиле, собранном в России, его кузов, с большой долей вероятности, часть своего пути прошел именно в этих стенах и именно на этой линии.

На протяжении всей истории, с того момента как был создан автомобиль, постоянно велись поиски новых материалов. И кузов автомобиля не был исключением. Производили кузов из дерева, стали, алюминия и различных видов пластика. Но на этом поиски не останавливались. И, наверняка, каждому интересно, из какого материала делают кузова автомобилей сегодня?

Пожалуй, изготовление кузова является при создании автомобиля одним из самых сложных процессов. Цех в заводе, где производятся кузова, занимает площадь приблизительно 400 000 м кВ, стоимость которого миллиард долларов.

Для изготовления кузова необходимо больше сотни отдельных частей, которые затем нужно соединить в одну конструкцию, соединяющую в себе все части современного автомобиля. Для легкости, прочности, безопасности и минимальной стоимости кузова конструкторам необходимо все время идти на компромиссы, искать новые технологии, новые материалы.

Рассмотрим недостатки и преимущества основных материалов, используемых при изготовлении современных кузовов автомобилей.

Этот материал используется для изготовления кузовов давно. Сталь имеет хорошие свойства, позволяющие изготавливать детали различной формы, и с помощью различных способов сварки соединять необходимые детали в целую конструкцию.

Разработан новый сорт стали (упрочняющийся во время термической обработки, легированный), позволяющий упростить производство и в дальнейшем получить заданные свойства кузова.

Изготавливается кузов в несколько этапов.

С самого начала изготовления из стальных листов, имеющих разную толщину, штампуются отдельные детали. После эти детали свариваются в крупные узлы и с помощью сварки собираются в одно целое. Сварку на современных заводах ведут роботы, но и ручные виды сварки также применяются — полуавтоматом в среде углекислого газа или используется контактная сварка.

С появлением алюминияпотребовалось разрабатывать новые технологии для получения заданных свойств, которые должны быть у стальных кузовов. Технология Tailored blanks как раз и является одной из новинок — сваренные встык по шаблону стальные листы различной толщины из разнообразных сортов стали образуют заготовку для штамповки. Тем самым отдельные части изготовленной детали обладают пластичностью и прочностью.

  • низкая стоимость,
  • высокая ремонтопригодность кузова,
  • отработанная технология производства и утилизации кузовных деталей.
  • самая большая масса,
  • требуется защита от коррозии,
  • потребность в большом количестве штампов,
  • их дороговизна,
  • а такжеограниченный срок службы.

Все идет в дело.

Все материалы, о которых говорилось выше, имеют положительные свойства. Поэтому конструкторами проектируются кузова, сочетающиеся детали из разных материалов. Тем самым при использовании можно обходить недостатки, а использовать исключительно положительные качества.

Кузов Mercedes-Benz CL является примером гибридной конструкции, так как при изготовлении применялись такие материалы — алюминий, сталь, пластик и магний. Из стали изготовлены днище багажного отделения и каркас моторного отсека, и некоторые отдельные элементы каркаса. Из алюминия изготовлен ряд наружных панелей и деталей каркаса. Из магния изготовлены каркасы дверей. Из пластика изготавливают крышку багажника и передние крылья. Еще возможна такая конструкция кузова, в которой каркас будет изготовлен из алюминия и стали, а наружные панели из пластика и/или алюминия.

  • вес кузова снижается, при этом сохраняется жесткость и прочность,
  • преимущества каждого из материалов при применении используются максимально.
  • необходимость специальных технологий соединения деталей,
  • сложная утилизация кузова, так как необходимо предварительно разобрать кузов на элементы.

Алюминиевые сплавы для изготовления автомобильных кузовов начали использовать относительно недавно, хотя и были применены впервые в прошлом столетии, в 30-е годы.

Используют алюминий при изготовлении всего кузова или его отдельных деталей — капот, каркас, двери, крышу багажника.

Начальный этап изготовления алюминиевого кузова схожий с изготовлением стального кузова. Детали вначале штампуются из листа алюминия, потом собираются в целую конструкцию. Сварка используется в среде аргона, соединения на заклепках и/или с использованием специального клея, лазерная сварка. Также к стальному каркасу, который изготовлен из труб разного сечения, крепятся кузовные панели.

  • возможность изготовить детали любой формы,
  • кузов легче стального, при этом прочность равная,
  • легкость в обработке, вторичная переработка не составляет труда,
  • устойчивостьк коррозии (кроме электрохимической), а такженизкая цена технологических процессов.
  • низкая ремонтопригодность,
  • необходимость в дорогостоящих способах соединения деталей,
  • необходимость специального оборудования,
  • значительно дороже стали, так как энергозатраты намного выше

Термопласты.

Это такой тип пластического материала, который при повышении температуры переходит в жидкое состояние и делается текучим. Этот материал применяется при изготовлении бамперов,деталей обшивки салона.

  • легче стального,
  • при переработке минимальные затраты,
  • низкая стоимость подготовки и самого производства при сравнении с алюминиевыми и стальными кузовами (не нужна штамповка деталей, сварочное производство, гальваническое и окрасочное производства)
  • потребность в больших и дорогостоящих литьевых машинах,
  • при повреждениях сложность в ремонте, в некоторых случаях единственным выходом является замена детали.

Стеклопластик.

Под названием стеклопластик имеется в виду любой волокнистый наполнитель, который пропитан полимерными термореактивными смолами. Наиболее известными наполнителями считаются — карбон, стеклоткань, кевлар, а также волокна растительного происхождения.

Карбон, стеклоткань из группы угле-пластиков, которые представляют собой сеть из переплетенных углеродных волокон (притом, переплетение происходит под разными определенными углами), которые пропитаны специальными смолами.

Кевлар — это синтетическое полиамидное волокно, отличающееся маленьким весом, устойчивое к высокой температуре, негорючее, по прочности на разрыв превосходит сталь в несколько раз.

Технология изготовления кузовных деталей заключается в следующем: в специальные матрицы укладывается слоями наполнитель, который пропитывают синтетической смолой, затем оставляют для ее полимеризации на определенное время.

Имеется несколько способов по изготовлению кузовов: монокок (весь кузов — одна деталь), наружная панель из пластика, установленная на алюминиевом или стальном каркасе,атакже идущий без перерывов кузов с интегрированными в его структуру силовыми элементами.

Источник https://auto-flight.ru/iz-kakih-materialov-sdelan-avtomobil-iz-chego-delayut-kuzova/
Источник https://polimersale.ru/iz-kakogo-marki-metalla-delayut-avtomobili-materialy-iz.html

Интересные статьи

Leave a Comment

X