Как работает регулятор давления тормозов при торможении автомобиля?

Содержание

Регулятор тормозных сил:настройка,неисправности,замена,проверка,фото,видео

Как работает регулятор давления тормозов при торможении автомобиля?

Регулятор тормозных сил, в народе “колдун”, является одним из узлов тормозной системы автомобиля. Его главное предназначение – это противодействие заносу задней оси автомобиля при торможении. В современных автомобилях механический регулятор заменила электронная система EBD. В статье выясним, что такое “колдун”, из каких элементов он состоит и как работает. Рассмотрим, как и для чего проводится регулировка этого устройства, а также узнаем последствия эксплуатации автомобиля без него.

Как работает регулятор давления тормозов при торможении автомобиля?

Простыми словами:
При резком нажатие на педаль тормоза, задняя часть у автомобиля поднимается а передняя опускается и в связи с этим колдун начинает свою работу. После того как колдун начал работу, он тем самым не даёт задним колёсам у автомобиля тут же начать тормозить после нажатия на педаль, а зачем это нужно?

Всё дело в том, если задние колёса у автомобиля начнут тормозить в одно время вместе с передними, то появится очень большая вероятность того что автомобиль занесёт. А в том случае если задние колёса у автомобиля сработают с небольшим запозданием, то в такой ситуации гораздо меньше будет вероятность того что машину занесёт.

Примечание!
Более подробную работу колдуна, вы так же можете изучить в видео-ролике который вы найдёте в самом низу статьи!

Тяжелыми словами:
При торможении автомобиля, в задней его части увеличивается расстояние между днищем и задним мостом автомобиля.

В то время пока расстояние увеличивается, рычаг от моста отпускает поршень который находится в колдуне и тем самым этот поршень перекрывает доступ тормозной жидкости к задним колёсам.

А что у нас будет если доступ тормозной жидкости к задним колёсам перекрыт? Всё элементарно, колёса не будут блокироваться а будут продолжать крутиться.

Примечание!
Но в самом регуляторе присутствует ещё небольшая пружинка, благодаря которой поршень перекрывает не всю тормозную жидкость а лишь часть её и в связи с этим задние колёса у автомобиля всё же будут тормозить, но полностью блокироваться не будут!

Пневматический регулятор тормозных сил

Пневматический регулятор тормозных сил автомобиля КамАЗ, устанавливаемый на лонжероне 7 рамы автомобиля, состоит собственно из автоматического регулятора 2 рычага 3, регулируемой тяги 4, упругого элемента 5, компенсатора 7, связанного штангой 6 с балками 8 и 9 мостов автомобиля. Механизмы и имеющиеся крепления обеспечивают компенсацию перекосов тележки, возможных при торможении на неровных дорогах. Упругий элемент защищает регулятор от повреждений при вертикальных перемещениях мостов задней тележки, а также смягчает резкие толчки и уменьшает вибрацию.

Как работает регулятор давления тормозов при торможении автомобиля?

Рис. Схема установки регулятора тормозных сил:
1 — лонжерон; 2 — регулятор тормозных сил; 3 — рычаг регулятора; 4 — тяга; 5 — упругий элемент; 6 — штанга; 7 — компенсатор; 8, 9 — балки мостов; I — положение рычага регулятора при наибольшей осевой нагрузке («груженый» автомобиль); II — положение рычага при наименьшей нагрузке («порожний» автомобиль)

Рассмотрим устройство и принцип действия пневматического регулятора тормозных сил.

Как работает регулятор давления тормозов при торможении автомобиля?

Рис. Автоматический регулятор тормозных сил:
а — общий вид; б — конструкция; 1 — клапан; 2 — ступенчатый поршень; 3 — толкатель; 4 — рычаг; 5 — мембрана (диафрагма); 6 — шаровая пята; 7 — поршень; 8 — направляющая толкателя; 9 — вставки в корпусе; 10 — соединительная трубка; 11 — ребра поршня; I, II — полости; III — вывод в атмосферу

У груженого автомобиля рычаг 4 находится в крайнем верхнем положении. При торможении сжатый воздух поступает в полость 1. Поэтому поршень 2 переместится вниз, а по трубке 10 воздух из полости I поступит в нижнюю часть и будет оказывать давление на поршень 7 плунжерного типа, прижимая шаровую пяту 6 к толкателю 3. При перемещении поршня 2 вниз вместе с ним движется клапан 7, который посредством толкателя сначала отсоединит полость II от выхода в атмосферу, а затем отойдет от седла поршня 2. В результате полость I соединится с выходной полостью II, а сжатый воздух поступит через полость II к тормозным камерам колес.

Вставка в корпусе имеет наклонные ребра Я на которые опирается мембрана (диафрагма) 5 при верхнем положении поршня 2. Поршень 2 также имеет ребра 11. Чем ниже опустится рычаг и связанный с ним толкатель, тем ниже опустится и поршень 2. Следовательно, увеличится рабочая площадь мембраны 5, воздействующей на поршень 2.

Когда рычаг находится в верхнем положении (при полной осевой нагрузке), толкатель также расположен вверху. Для открытия клапана поршень 2 должен переместиться вниз. При небольшом его перемещении наклонные ребра 11 поршня 2 не выходят ниже ребер 9 вставки. При этом мембрана опирается только ца ребра вставки, и усилие от нее на поршень 2 не передается.

Когда рычаг находится в крайнем нижнем положении (наименьшая осевая нагрузка), поршень 2 должен максимально переместиться вниз для открытия клапана, поскольку толкатель также будет находиться в нижнем положении. В случае максимального перемещения поршня 2 вниз его наклонные ребра опустятся ниже ребер вставки. При этом активная площадь мембраны становится наибольшей. В результате в полости II установится давление воздуха, примерно равное 1/3 давления на входе в регулятор.

При растормаживании колес давление воздуха в полости 1 упадет, и поршень 2 переместится вверх. При этом клапан сядет на седло поршня 2, разобщая полости I и II, и оторвется от толкателя. В результате сжатый воздух из тормозных камер колес средней и задней осей через полость II и полый толкатель выходит в атмосферу, отгибая края резинового клапана. А все элементы регулятора возвращаются в исходное положение.

Рассмотренные регуляторы корректируют давление рабочего тела (воздуха) для обеспечения одновременной блокировки колес передней и задней осей. При этом происходит упреждающая блокировка колес передней оси. Однако такой способ торможения не является наиболее эффективным и безопасным с точки зрения сохранения устойчивости движения автомобиля при торможении. Кроме этого, происходит излишний износ шин.

Коэффициент сцепления колес с дорогой зависит от степени их скольжения, которая меняется в пределах от 0 (чистое качение колеса) до 100 % (полное буксование или скольжение при блокировке колес). Максимальные значения коэффициента сцепления порядка 10… 30 % (в зависимости от дорожной поверхности) будут при пробуксовке колес. Следовательно, при таком коэффициенте и степени скольжения колес можно обеспечить наибольшую эффективность и безопасность торможения. Именно это обеспечивают АБС.

Все современные АБС относятся к самонастраивающимся автоматическим системам. Они включают в себя:

  • датчики угловой скорости колес
  • электронно-решающий блок
  • модуляторы давления

При работе АБС сигнал от датчиков угловой скорости вращения колес подается в электронно-решающий блок, в котором в соответствии с заданной программой формируются сигналы управления, поступающие на модулятор.

Как работает регулятор давления тормозов при торможении автомобиля?

Рис. Схема пневматического модулятора АБС (а) и его характеристика (б):
1, 5, 6 — клапаны; 2, 3 — электромагниты; 4 — поршень; А—Д — полости; р — давление; t — время

На рисунке показана схема пневматического модулятора АБС и его характеристика (изменение во времени тормозной силы). Работа АБС сопровождается многоцикловым процессом автоматического растормаживания и торможения колес автомобиля. В каждом цикле имеются фазы автоматического растормаживания, «выдержки» и затормаживания (штриховые линии на рис. б) колес. Имеются АБС, в которых осуществляется двухфазовый цикл (фаза «выдержки» отсутствует). Работа АБС обеспечивает требуемые угловую скорость колеса и его скольжение, соответствующее максимальным сцепным характеристикам.

Работа пневматического модулятора

Рассмотрим подробно работу пневматического модулятора, выполненного на базе ускорительного клапана (рис. а). Сжатый воздух от тормозного крана поступает по магистрали в полость А и далее через полость Б проходит в полость В и давит на следящий поршень 4 вниз. Поршень перемещается вниз и упирается в клапан 5, отсоединяя полость Г от выхода в атмосферу. Дальнейшее перемещение поршня вниз приводит к открытию клапана 5.

В результате сжатый воздух начинает проходить из ресивера через полости Д и Г в тормозные камеры.

Если тормозящееся колесо начинает блокироваться, электронный блок посылает одновременно сигналы управления на электромагниты 2 и 3, которые закрывают клапан 1 и открывают клапан 6. При этом полости Б и В соединяется с атмосферой — происходит автоматическое растормаживание колеса. При некотором угловом ускорении колеса электронный блок снимает электрическое напряжение с электромагнита 3. В результате клапан 6 под действием пружины снова закрывается и наступает фаза выдержки.

Фаза повторного автоматического затормаживания колеса имеет место в том случае, когда колесо приобретает пороговое угловое ускорение. При этом электронный блок снимает электрическое напряжение, и с электромагнита 2, что позволяет клапану 1 открыться и соединить рабочую полость В с магистралью. Затем цикл повторяется.

Интегрированные системы активной безопасности (ИСАБ)

В настоящее время разработаны отечественные интегрированные системы активной безопасности (ИСАБ), образующие комплекс АБС и ПБС.

В отличие от АБС устанавливаемая в ИСАЕ противобуксовочная система обеспечивает требуемое движение колес не в тормозном (как при работе АБС), а в тяговом режиме. Дело в том, что при движении автомобиля, в том числе при маневрировании на дороге с различными сцепными свойствами участков поверхности, взаимодействующей с ведущим колесом, возникает разная пробуксовка. Это может привести к потере устойчивости движения, например, при разгоне автомобиля, когда к колесам может быть подведена излишняя тяга, неуравновешенная сцепными возможностями пары «колесо — дорога». Действие ПБС в отличие от АБС основано на том, что в случае появления пробуксовки ведущего колеса автомобиля система обеспечивает на этом колесе уменьшение тягового усилия. Тем самым предотвращается пробуксовка колес и повышается устойчивость движения автомобиля. Как правило, работа ПБС основана на уменьшении топливоподачи к двигателю, т.е. сводится к снижению тягового усилия на буксующем колесе (колесах).

Вам будет интересно  С какой стороны тормоз

Возможные неисправности регулятора

В целом, неисправностей, которые могут возникать в колдуне, немного. К ним можно отнести:

  • Заклинивание клапана;
  • Разрегулированность положения;
  • Протечки тормозной жидкости.

Разрегулированный колдун можно настроить. Определить необходимость регулировки можно по поведению машины при нажатии на тормоз. При неправильной настройке регулятора машину начинает бросать в сторону.Как работает регулятор давления тормозов при торможении автомобиля?

При заклинивании клапана или протечках жидкости механизм подлежит замене. Теоретически его можно отремонтировать. Однако процесс такого ремонта сложен и дорог, что делает его нерентабельным.

Настройка регулятора тормозных усилий

Регулировка колдуна должна производиться на эстакаде или смотровой яме. При этом автомобиль разгружают и загоняют на место проведения работ. Для выполнения манипуляции понадобится:

  1. Накидной ключ на 13 или соответствующая головка;
  2. Сверло диаметром 2 мм.

Чтобы отрегулировать колдун, гаечным ключом ослабляют болт его крепления к кронштейну рычага. Далее с помощью отвертки перемещают кронштейн до тех пор, пока получившийся зазор не позволит вставить в него подготовленное двухмиллиметровое сверло. После этого болт затягивают. Как работает регулятор давления тормозов при торможении автомобиля?

На заметку: регулятор давления тормозов ВАЗ-2110 и предыдущих ВАЗовских моделей в процессе эксплуатации закисает так, что сдвинуть его кронштейн не представляется возможным. В такой ситуации следует облить заржавевший участок жидкостью WD-40, подождать 15-30 минут, после чего ударами молотка через мягкую выколотку сместить деталь в сторону.

Замена регулятора давления тормозов

Замена колдуна на автомобилях ВАЗ-2110 и других ТС, оснащенных РДТ, производится на эстакаде. Необходим накидной ключ на 13, мощная отвертка и специальный ключ на 10, предназначенный для выкручивания тормозных трубок. Перед началом работы узел требуется очистить от грязи и ржавчины, облить WD-40 или другим проникающим составом, после чего подождать полчаса.

Работу начинают с откручивания болта крепления кронштейна к пружине. После демонтируются тормозные трубки, положение которых рекомендуется предварительно пометить.

Выкрутить штуцеры трубок можно и обычным ключом. Однако использование специального инструмента облегчает работу и снижает вероятность «слизывания» граней. После штуцеров выкручивают два болта крепления колдуна к кузову и снимают деталь.

Устанавливать новый колдун ВАЗ-2110 необходимо в строгой обратной последовательности. После его установки и перед тем, как отрегулировать РДТ, следует прокачать контуры задних тормозов. Далее производится вышеописанная процедура настройки колдуна.

Проверка

Проверка работы регулятора ВАЗ-2109, 2110 и других моделей АвтоВАЗа производится на ходу, на закрытых площадках. Для этого следует разогнать автомобиль до скорости 40 км/ч и резко нажать на тормоз. Задние колеса должны блокироваться на 1/2 секунды позже передних.

Наблюдение за колесами осуществляет помощник, находящийся вне машины. В случае, если блокировка колес происходит заметно позже или не происходит совсем, а также если задняя ось блокируется одновременно с передней, процедуру регулировки колдуна повторяют.

Для увеличения времени срабатывания задних тормозов зазор между регулятором и кронштейном увеличивают, для сокращения, соответственно, уменьшают.

О регуляторах тормозных усилий (P-Valve)

Бытует поверье, что при своде задних барабанных тормозов на дисковые необходимо также менять распределитель тормозных усилий (он же P-Valve) на регулятор от машин с задними дисковыми тормозами (ЗДТ). Причем в терминальной стадии этот постулат выглядит как «ставь любой от тачки с задними дисковыми тормозами». Поскольку такие советы попахивают техническим идиотизмом, а от тормозов зависит цельность очка шкуры, решено было с этим вопросом разобраться.

Вот он, классический тойотовский регулятор тормозных усилий:

Регулятор для машин с ABS

Это регулятор для машин с ABS. В машинах без ABS он такой же формы, но в том месте, где на фото желтая метка, находится еще один выход для тормозной трубки (который напрямую соединен с левым входом на фото).

Регулировка тормозных усилий Лада Веста

Принцип работы системы, регулирующей и распределяющей давление тормозной жидкости на автомобилях Lada Vesta, в корне отличается от предыдущих моделей. Регулятор давления тормозов Лада Веста напрямую связан с системой ABS и регулируется электронным методом в зависимости от скоростей каждого из колёс.

Блок управления ABS передаёт сигналы с датчиков скорости и анализирует обстановку. Электроника сама определяет все неисправности и сообщает о них водителю с помощью специальной лампы на приборной панели.

Регулировка “колдуна” на “Логане”

Регулятор тормозных усилий на “Логане” находится на днище между передней и задней осями.

Для самостоятельной регулировки нужно очистить “колдун” и заменить смазку в нем. Затем делают половину оборота регулировочной гайкой. Далее можно выезжать на тест. Если задняя пара колес не тормозит, то гайку подтягивают еще раз.

Если на тестируемом автомобиле нет АБС, тогда, даже если протянуть гайку вплоть до упора, можно не добиться результата. Иногда может помочь замена колдуна, однако и это не всегда спасает ситуацию. Дело в том, что у 9 из 10 “Логанов” без АБС регулятор не работает в принципе. Причины заключаются в слабой пружине. И у владельца два варианта – поменять пружины на более жесткие или установить резиновую прокладку для увеличения давления на механизм “колдуна”.

Устройство регулятора на автомобилях «КамАЗ»

Данный узел состоит из клапана, толкателя клапана вместе с приводом. Также в устройстве есть поршень с наклонным ребром, мембрана, которая находится в соединении с поршнем. Внутри корпуса есть соединительные трубки. Каналы регулятора крепятся к верхней части крана, а второй канал соединяется с тормозными камерами на задних колесах. Когда автомобиль снижает скорость, воздух, подающийся из верхней части тормозного крана к первому каналу регулятора, смещает поршень вниз, а тот с другой стороны сжимается до упора. Клапан прижимается к седлу толкателя и второй канал в этот момент больше соединяется с атмосферой. Затем дальнейшее движение поршня приведет к открытию клапана. Воздух из первого канала поступит во второй, а далее — на тормозные камеры.

Аналогичное устройство и принцип действия имеет регулятор тормозных сил МАЗ.

«Шевроле-Нива»

При штатном положении регулятора с увеличением массы автомобиля его тормозной путь уменьшается — сказывается более полное использование сцепного веса задними колесами.

Лучшее торможение — при полной нагрузке, когда регулятор минимально ограничивает давление в задних тормозных механизмах.

Но при частичной нагрузке это чревато заносом. Высокий центр тяжести и короткая база «Шнивы» способствуют значительному перераспределению масс при торможении, поэтому при частичной нагрузке вклад задней оси в торможение невелик.

Как установить тройник вместо колдуна

В случае ВАЗ 2106-07 можно просто удалить регулятор, тройник уже установлен в системе, просто к нему подводится магистраль от ГТЦ.

  1. Специальным ключом на «10» откручиваем штуцера тормозных трубок от механизма.
  2. Откручиваем от заднего тормозного шланга трубку, идущую от регулятора тормозов.

Отсоединяем трубку колдуна от заднего тормозного шланга

  1. Отсоединяем рычаг управления от моста и кузова. Вынимаем регулятор в сборе с тягой и выкидываем его.
  2. Тормозную трубку от главного тормозного цилиндра аккуратно изгибаем, чтобы уменьшить ее длину. Она не должна болтаться под днищем автомобиля. Соединяем ее с тормозным шлангом задних тормозов.

выгибаем тормозную трубку от главного цилиндра к заднему тормозному шлангу

Теперь все усилие от главного идет через тройник на оба задних тормозных цилиндра. Поэтому замедление будет происходить двумя колесами одновременно с передними.

Как произвести замену регулятора давления тормозов в автомобиле ВАЗ 2110?

1. Первое что нужно сделать — освободить рычаг привода регулятора, для этого поднимите скобу вверх. Если нужно, при помощи отвертки разожмите скобу серьги. Все манипуляции выполняются ключом на 10.

2. Отсоединив рычаг, аккуратно снимите скобу серьги.

3. Приготовьте ёмкость, её нужно поставить под место соединения регулятора с трубками, из него будет вытекать тормозная жидкость. Отсоединяем четыре трубки, открутив гайки крепления. Дожидаемся, пока жидкость стечет. Заглушаем отверстия трубок. Сделать это можно колпачками клапанов прокачки цилиндров. Рекомендуется промаркировать трубки, чтобы при дальнейшей установке не перепутать их.

4. Отворачиваем передний болт крепления кронштейна с регулятором.

5. Отворачиваем задний болт, которые удерживаем регулятора со стороны кронштейна, после чего снимаем регулятор (колдун), при этом привод не откручиваем.

6. Если нужно заменить детали привода — отворачиваем болт, который удерживает рычаг фиксатор, и отсоединяем от упругого рычага рычаг привода.

7. Когда вы будете подсоединять рычаг привода к упругому рычагу при соблюдении последовательности вилка фиксатора должна поместиться в проточку на упругий рычаг.

8. Далее устанавливаем регулятор давления тормозов в том же порядке, как и снимали. Обратите внимание, что передний болт крепления несколько длиннее заднего.

9. Если пружина рычага начнет выступать, мешая установке регулятора, то сдвиньте рычаг привода максимально вперед за выступ.

10. Установка завершена, теперь обожмите плоскогубцами скобки серьги. Чтобы убедиться в том, что система работает — прокачайте и отрегулируйте давление.

Устройство и принцип работы тормозной системы автомобиля

Если говорить о безопасности в автомобиле, сложно представить что-то более важное, чем хорошие тормоза. Всё остальное тоже важно, никто не спорит:на плохом двигателе далеко не уедешь, на плохих амортизаторах особо не расслабишься, но нормальная, исправная тормозная система автомобиля – это то, с чего вообще нужно начинать разговор о вождении.

Учитывая, что от тормозов буквально зависит человеческая жизнь, инженеры постарались сделать эту систему как можно более надежной. Что же там, под средней педалью?

Как работает регулятор давления тормозов при торможении автомобиля?
Тормозная система автомобиля

Рабочая (основная) тормозная система

Главное предназначение рабочей тормозной системы заключается в регулировании скорости движения автомобиля вплоть до его полной остановки.

Основная тормозная система состоит из тормозного привода и тормозных механизмов. На легковых автомобилях применяется преимущественно гидравлический привод.

Как работает регулятор давления тормозов при торможении автомобиля?
Схема тормозной системы автомобиля

Гидропривод состоит из:

  • главного тормозного цилиндра (ГТЦ);
  • вакуумного усилителя;
  • регулятора давления в задних тормозных механизмах (при отсутствии АВS);
  • блока ABS (при наличии);
  • рабочих тормозных цилиндров;
  • рабочих контуров.

Главный тормозной цилиндр преобразует усилие, сообщаемое водителем педали тормоза, в давление рабочей жидкости в системе и распределяет его по рабочим контурам.

Для увеличения силы, создающей давление в тормозной системе, гидропривод оснащается вакуумным усилителем.

Регулятор давления предназначен для уменьшения давления в приводе тормозных механизмов задних колес, что способствует более эффективному торможению.

Как работает регулятор давления тормозов при торможении автомобиля?
Виды контуров тормозной системы

Контуры тормозной системы, представляющие собой систему замкнутых трубопроводов, соединяют между собой главный тормозной цилиндр и тормозные механизмы колес.

Контуры могут дублировать друг друга или осуществлять только свои функции. Наиболее востребована двухконтурная схема тормозного привода, при которой пара контуров работает диагонально.

Пояснение действия ABS

Начиная с середины 2004 года все продаваемые в Европе автомобили серийно оснащены антиблокировочной системой тормозов. Для пояснения действия ABS имеют значение следующие основные понятия физических параметров движения:

  • тормозной путь,
  • тормозная сила,
  • проскальзывание шины,
  • коэффициент трения,
  • зависимость коэффициента трения от проскальзывания шины,
  • окружность профессора “Камма”.

Тормозной путь автомобиля (s, в метрах) зависит от веса автомобиля (m, в килограммах), скорости при начале торможения (v, в метрах в секунду) и тормозной силы (F, в Ньютонах): s = v2 x m / 2 x F. Тормозной путь должен быть минимальным.

При воздействии на педаль тормоза тормозная система создает тормозную силу, передаваемую через шины на дорожное полотно. Тормозная сила может возрасти настолько, что вращение заторможенного колеса начинает блокироваться.

Окружная скорость свободно вращающегося колеса равна скорости автомобиля. Движение колеса относительно дорожного полотна замедляется или ускоряется под воздействием тормозной силы или силы ускорения, и возникает проскальзывание шины. При блокировке колеса проскальзывание шины составляет 100 %, при свободно катящемся – 0 %.

Для достижения минимально возможного тормозного пути шина должна иметь возможность передать на дорожное полотно максимально возможную тормозную силу. Эта свойство определяется коэффициентом трения.

Коэффициент трения обозначает соотношение между силой шины, действующей на опорную поверхность (Fn, в Ньютонах), и силой трения (Fr, в Ньютонах), необходимой для движения заблокированного колеса по поверхности дорожного полотна: = Fr / Fn.

Сила, воздействующая на опорную поверхность Fn, определяется общим весом и положением центра тяжести автомобиля. Сила трения Fr зависит от:

  • состава сырья дорожного покрытия,
  • характеристик поверхности дорожного полотна,
  • материалов, из которых изготовлены шины,
  • конструкции шин,
  • преобладающего вида трения (трение сцепления, скольжения или качения).

Из-за свойств вискозы, входящей в состав шин, на опорной поверхности шины возникают три различных вида трения с переменным удельным весом. Это приводит к так называемому полусухому трению. При полусухом трении удельный вес соответствующего вида трения зависит от преобладающего проскальзывания шины.

Так как коэффициент трения зависит от вида трения, то из этого следует, что зависит и от проскальзывания шины. Приведенный ниже график поясняет эту мысль.

Как работает регулятор давления тормозов при торможении автомобиля?

Оптимальный коэффициент трения современной шины находится в диапазоне от 15 до 22 % проскальзывания шины (зеленая область). Шина передает на дорожное полотно продольные и поперечные силы. Продольные усилия возникают при разгоне и торможении, а поперечные — при движении в повороте.

Максимальная сила трения шины зависит от деления продольных и поперечных сил. Это означает, что полностью блокированное колесо не в состоянии в дальнейшем принимать на себя силы бокового увода ни при каких обстоятельствах, и автомобиль становится не управляемым.

Как работает регулятор давления тормозов при торможении автомобиля?

Противоположно этому, шина, которая передает максимальную силу бокового увода, более не может передавать на дорожное полотно тормозную силу. Эта взаимосвязь поясняется с помощью так называемой «Окружности профессора Камма».

Устройство тормозной системы автомобиля

Как работает регулятор давления тормозов при торможении автомобиля?
Тормозная система
Основой тормозной системы являются тормозные механизмы и их приводы.

Тормозной механизм служит для создания тормозного момента, необходимого для торможения и остановки транспортного средства. Механизм устанавливается на ступице колеса, а принцип его работы основан на использовании силы трения. Тормозные механизмы могут быть дисковыми или барабанными.

Конструктивно тормозной механизм состоит из статичной и вращающейся частей. Статичную часть у барабанного механизма представляет тормозной барабан, а вращающуюся – тормозные колодки с накладками. В дисковом механизме вращающаяся часть представлена тормозным диском, неподвижная – суппортом с тормозными колодками.

Управляет тормозными механизмами привод.

Гидравлический привод не является единственным из применяемых в тормозной системе. Так в системе стояночного тормоза используется механический привод, представляющий собой совокупность тяг, рычагов и тросов. Устройство соединяет тормозные механизмы задних колес с рычагом стояночного тормоза. Также существует электромеханический стояночный тормоз, в котором используется электропривод.

В состав тормозной системы с гидравлическим приводом могут быть включены разнообразные электронные системы: антиблокировочная, система курсовой устойчивости, усилитель экстренного торможения, система помощи при экстренном торможении (Brake Assist System).

Существуют и другие виды тормозного привода: пневматический, электрический и комбинированный. Последний может быть представлен как пневмогидравлический или гидропневматический.

Краткий экскурс в историю

Начнем издалека. 1902 год. Английский джентльмен Уильям Ланчестер запатентовал дисковое тормозное устройство. Это был один из первых действительно рабочих прототипов тормоза для небольших автомобилей. К несчастью, устройство издавало сильный шум при работе. Немногим позже Луи Рено представил более совершенные барабанные тормоза. Но на этом история не закончилась — она только начиналась.

Вплоть до 50-х годов 20 века инженеры экспериментировали с автомобильными тормозами. Талантливые инженеры Уолтер Крайслер и Уильям Локхид серьезно дорабатывают автомобильные тормоза и благотворно влияют на популярность данных устройств. По мере того как скорость выпускаемых автомобилей возрастала (прямое следствие развития технологий), росла и необходимость использования более совершенных тормозных систем. Тогдашние гидравлические системы хоть и показали свою эффективность, но уступили первенство дисковым тормозам. Эксперименты продолжались, и уже ко второй половине 20 века мир знал несколько тормозных механизмов. Среди них:

  1. Барабанный;
  2. Дисковый;
  3. Колодочный;
  4. Ленточный;
  5. Электрический;
  6. Гидравлический;
  7. Механический, он же фрикционный;
  8. Колесный.

С появление перфорируемых и вентилируемых дисков эффективность систем, оборудованных этими самыми дисками, возросла. Еще чуть позже появились многопоршневые цилиндры. К слову, потребность в таких цилиндрах была очень высока — диски тормозных систем становились больше, а значит, требовались более крупные колодки, которые было нет так-то просто прижать к дискам.

И вот что имеют легковые автомобили сегодня (по большей части, разумеется): пара передних дисковых тормозов и еще пара барабанных тормозов на задние колеса. Барабанная система отлично показала себя в тяжелом транспорте. Во многом благодаря гению немецких инженеров компании Bosch мир увидел антипробуксовочные и антиблокировочные системы, а там уже недалеко оставалось до появления систем курсовой устойчивости. К нашему времени тормоза сильно преобразались в сравнении с тормозами 20 века: они стали крупнее, тише в работе, они располагают к маневренной езде и способны сбросить скорость даже очень крупного и тяжелого автомобиля. И, разумеется, они имеют большой эксплуатационный ресурс.

Тормозные диски Avto.pro

А как же остальные системы тормоза? Ленточные тормоза используют лишь в отдельных агрегатах, а довольно сложные электрические тормоза пока что являются объектом тестов и тщательных проверок. Довольно часто в грузовиках и прицепах устанавливают электроусилители тормозов, однако до перехода на полностью электрические тормоза еще далеко. Впрочем, в некотором электротранспорте данная система все же применяется.

Принцип работы тормозной системы

Работа тормозной системы строится следующим образом:

  1. При нажатии на педаль тормоза водитель создает усилие, которое передается к вакуумному усилителю.
  2. Далее оно увеличивается в вакуумном усилителе и передается в главный тормозной цилиндр.
  3. Поршень ГТЦ нагнетает рабочую жидкость к колесным цилиндрам через трубопроводы, за счет чего растет давление в тормозном приводе, а поршни рабочих цилиндров перемещают тормозные колодки к дискам.
  4. Дальнейшее нажатие на педаль еще больше увеличивает давление жидкости, за счет чего срабатывают тормозные механизмы, приводящие к замедлению вращения колес. Давление рабочей жидкости может приблизиться к 10-15 МПа. Чем оно больше, тем эффективнее происходит торможение.
  5. Опускание педали тормоза приводит к ее возврату в исходное положение под действием возвратной пружины. В нейтральное положение возвращается и поршень ГТЦ. Рабочая жидкость также перемещается в главный тормозной цилиндр. Колодки отпускают диски или барабаны. Давление в системе падает.

Важно! Рабочую жидкость в системе нужно периодически менять. Сколько тормозной жидкости потребуется на одну замену? Не более литра-полутора.

Устройство тормозной системы легкового автомобиля гидравлический тормоз Устройство тормозной системы легкового автомобиля Как работает тормозная система автомобиля

Подробнее о стояночном тормозе

Наиболее простой стояночный тормоз, который в народе прозвали ручником, включает рычаг с храповым механизмом и от одного до трех тросиков. Вообще, ручник по своей сути является дополнением к рабочей гидравлической тормозной системе, хотя в отдельных автомобилях (ГАЗ-13, а также ГАЗ-21) он работает в тандеме с трансмиссионным тормозом. В транспорте с пневматическими тормозами на передний план выходят т.н. пружинные энергоаккумуляторы.

В автомобилях с наиболее распространенными на данный момент дисковыми тормозами могут применяться несколько разновидностей стояночного тормоза:

  • Барабанный;
  • Винтовой;
  • Кулачковый.

Стандартный барабанный механизм используется в системах с дисковыми тормозами, оборудованных несколькими поршнями. Менее сложные, на первый взгляд, винтовые ручники нашли применение в тех же тормозах, но имеющих один поршень. Он управляется вкрученным винтом. Вращение винта обеспечивается рычагом, который соединяется с тросом. Поршень двигается по резьбе, тем самым прижимая колодки к тормозному диску. В кулачковых ручниках движение поршня обеспечивается толкателем, привод которого соединен с кулачком. Последний соединен с рычагом при помощи троса, точно как и в винтовом ручнике. Толкатель начинает перемещаться при повороте кулачка.

Трос ручного тормоза Avto.pro

Особых сложностей в эксплуатации ручного тормоза любой конструкции нет, однако автолюбитель важно знать о том, что это устройство требует бережного отношения. Так, например, не стоит ехать на ручнике, ведь это приводит к перегреву и быстрому износу тормозных дисков и колодок. На автомобилях с АКПП имеется режим «паркинг», однако его стоит использовать вместе с ручником. В первую очередь это позволяет дольше эксплуатировать механизм «паркинга». Во вторую, имея подключенный ручник, водитель снижает вероятность отката машины, припаркованной в крайне ограниченном пространстве.

Основные неисправности тормозной системы

В таблице ниже приведены наиболее распространенные неисправности тормозной системы автомобиля и способы их устранения.

Симптомы Вероятная причина Варианты устранения
Слышен свист или шум при торможении Износ тормозных колодок, их низкое качество или брак; деформация тормозного диска или попадание на него постороннего предмета Замена или очистка колодок и дисков
Увеличенный ход педали Утечка рабочей жидкости из колесных цилиндров; попадание воздуха в тормозную систему; износ или повреждение резиновых шлангов и прокладок в ГТЦ Замена неисправных деталей; прокачка тормозной системы
Увеличенное усилие на педаль при торможении Отказ вакуумного усилителя; повреждение шлангов Замена усилителя или шланга
Заторможенность всех колес Заклинивание поршня в ГТЦ; отсутствие свободного хода педали Замена ГТЦ; выставление правильного свободного хода

Система динамической стабилизации

Электронная система поддержания курсовой устойчивости оказывает активное влияние на динамику движения автомобиля в предельных диапазонах. Для получения более ясного представления о принципах работы системы динамической стабилизации (ESP) кратко поясняются следующие основные понятия по динамике движения:

  1. Поперечное ускорение.
  2. Момент рыскания.
  3. Рыскание.
  4. Недостаточная поворачиваемость.
  5. Избыточная поворачиваемость.

Поперечное ускорение

При движении в кривой на автомобиль действует центробежная сила. Величина центробежной силы зависит от веса автомобиля и ускорения, действующего в поперечном направлении по отношению к направлению движения.

Это поперечное ускорение в свою очередь, зависит от скорости автомобиля и радиуса кривой поворота. При чрезмерно сильном возрастании поперечного ускорения, автомобиль выносит из кривой.

Момент рыскания

Возникающей в повороте центробежной силе противодействует сила бокового увода шин. При устойчивом движении в повороте действующая центробежная сила равна сумме переданных сил бокового увода. Если центробежная сила превышает сумму передаваемых сил бокового увода, то автомобиль теряет устойчивость, т.е. автомобиль более не следует по траектории, выбранной водителем.

Доля центробежной силы, превышающая передаваемую силу бокового увода, вместе с приложенным к центру тяжести автомобиля плечом рычага образует крутящий момент. Этот крутящий момент, называемый также моментом рыскания, стремится повернуть автомобиль вокруг вертикальной оси. Скорость вращения вокруг вертикальной оси автомобиля называется рысканием. Величина рыскания зависит от момента рыскания и массы автомобиля.

Недостаточная / избыточная поворачиваемость

В зависимости от направления вращения момента рыскания автомобиль при движении в кривой описывает больший или меньший радиус, чем тот, который соответствовал повороту передних колес. Если автомобиль описывает больший радиус кривой, то есть автомобиль выталкивает из кривой передними колесами, то речь идет о недостаточной поворачиваемости.

Недостаточная поворачиваемость в предельном диапазоне возникает, как правило, на автомобилях с передним приводом. Если автомобиль описывает меньший радиус кривой, то есть автомобиль выталкивает из кривой задними колесами, то речь идет об избыточной поворачиваемости. Избыточная поворачиваемость в предельном диапазоне возникает, как правило, на автомобилях с приводом на задние колёса.

Способ регулирования

Для пояснения способов регулирования остановимся подробно на следующих вопросах:

  1. Фактор влияния регулирования.
  2. Регулирующее воздействие при наступлении недостаточной поворачиваемости.
  3. Регулирующее воздействие при наступлении избыточной поворачиваемости.
  4. Регулирующее воздействие для стабилизирования прицепа.
  5. Регулирующее воздействие для предотвращения опрокидывания.
  6. Регулирующее воздействие динамического движение по кривой.
  7. Управление тормозной системой во время регулирующего воздействия.

Факторы влияния регулирования

Для электронной системы поддержания курсовой устойчивости также, как и для системы контроля тягового усилия, используется большинство компонентов антиблокировочной системы тормозов, к ним относятся:

  1. датчик угла поворота рулевого колеса,
  2. датчик поперечного ускорения,
  3. датчик рыскания.

Датчики электронной системы поддержания курсовой устойчивости могут быть объединены в две группы: датчики, отслеживающие динамические характеристики автомобиля, соответствующие намерениям водителя:

  • Датчик угла поворота рулевого колеса.
  • Датчики скорости вращения колеса.

Датчики, отслеживающие действительные динамические характеристики автомобиля:

  • Датчик рысканья автомобиля.
  • Датчик поперечного ускорения.

Модуль антиблокировочной системы тормозов/электронной системы поддержания курсовой устойчивости по углу поворота руля и частоте вращения колес определяет задаваемую водителем дорожную ситуацию и вычисляет подходящие для нее значения поперечного ускорения и величины рыскания.

Если рассчитанные значения начинают отличаться от действительных величин, фиксируемых датчиками рысканья и поперечного ускорения, то стабильность дорожной ситуации нарушается, и осуществляется регулирующее воздействие на отдельные колесные тормозные механизмы.

Как работает регулятор давления тормозов при торможении автомобиля?

A динамические характеристики, соответствующие намерениям водителя,

B действительные динамические характеристики автомобиля,

  1. угол поворота и скорость поворота рулевого колеса,
  2. сигналы частоты вращения колес,
  3. рыскание,
  4. поперечное ускорение,
  5. модуль электронной системы поддержания курсовой устойчивости / блок регулирования,
  6. колесный тормозной механизм.

Регулирующее воздействие при недостаточной поворачиваемости

При недостаточной поворачиваемости производится тормозное управляющее воздействие на внутреннее по отношению к повороту колеса. Переднее колесо затормаживается до сближения с оптимальным значением величины проскальзывания (возможно более высокий коэффициент трения).

Возникающая тормозная сила с помощью эффективного плеча рычага между площадью контакта шины и центром тяжести автомобиля образует крутящий момент, приводящий к повороту автомобиля вовнутрь кривой. Заднее колесо затормаживается с сильным проскальзыванием для того, чтобы целенаправленно сократить силу бокового увода на задней подвеске.

Вследствие этого центробежная сила, действующая при движении по кривой, может поддерживать вращательное движение автомобиля. В то же самое время для придания устойчивости автомобилю снижается мощность двигателя воздействием на систему управления двигателем.

Регулирующее воздействие избыточной поворачиваемости

При избыточной поворачиваемости осуществляется тормозное управляющее воздействие, прикладываемое ко внешним по отношению к повороту колесам, при этом переднее колесо затормаживается с сильным проскальзыванием для уменьшения силы бокового увода на передней подвеске.

Заднее колесо затормаживается с оптимальным проскальзыванием для того, чтобы, используя возникающий рычаг, вывернуть автомобиль наружу из кривой. Мощность двигателя вновь снижается соответствующим образом для придания устойчивости автомобилю.

Регулирующее воздействие для стабилизирования прицепа

При движении по сигналам датчика угла поворота рулевого колеса и датчика рыскания, электронная система поддержания курсовой устойчивости распознает виляния прицепа, и с помощью взаимного (правого/левого) торможения и дополнительно, при необходимости, снижения мощности двигателя скорость автомобиля с прицепом снижается до тех пор, пока не прекратятся колебания прицепа.

Регулирующее воздействие для предотвращения опрокидывания

При внезапном, очень резком объезде препятствия, предпринятом водителем, существует возможность опрокидывания, и в этом случае передние колеса поочередно подтормаживаются, одновременно крутящий момент двигателя снижается до нуля.

Это вмешательство в работу тормозной системы и двигателя производит под регулирование и уменьшает скорость, что позволяет уменьшить поперечное ускорение и, соответственно, наклон, ведущий к опрокидыванию.

Как только опрокидывающий наклон предотвращен, прекращается вмешательство в работу систем управления тормозами и двигателем. Внезапный объездной маневр с опрокидыванием распознается по согласованности сигналов датчика угла поворота рулевого управления и датчика рыскания/поперечного ускорения.

Как правильно тормозить? Виды и способы торможения автомобиля

Резкое торможение

Каждый водитель должен уметь правильно тормозить, причем в разных ситуациях. Очень часто автомобилисты в экстремальных ситуациях тормозят резко с полной блокировкой колес как своеобразным защитным рефлексом. Однако подобное экстренное торможение совсем не рекомендуется применять – порой, оно оборачивается блокировкой и скольжением колес, впоследствии автомобиль резко заносит, а тормозной путь лишь увеличивается. Результатом этого резкого торможения может стать авария – автомобиль может попросту выбросить в кювет или опрокинуться. Вцелом, правильное торможение водителя подразумевает умение водителя применять сцепление колес с дорогой, а также продолжать направление своего движения прямолинейно в процессе торможения.

Виды и приемы торможения автомобиля

Существует несколько видов и приемов торможения.

Плавное торможение автомобиля

Самым безопасным из них является плавное торможение, которое осуществляется путем нажатия на педаль тормоза. Плавное торможение применяют в случае спокойного движения машины, при средней скорости, и тогда, когда дорожное покрытие может себе позволить хорошее сцепление с колесами. В школах вождения данный вид торможения рассматривается как основной, так как он не несет каких – либо неприятных последствий или износа шин. Недостатком плавного торможения считается то, что его можно применять не везде: если качество дорожного покрытия оставляет желать лучшего, то эффективность плавного торможения падает.

Резкое торможение автомобиля

Следующим распространенным видом торможения является резкое торможение. Оно осуществляется резким нажатием педали тормоза почти до самого упора и удержанием педали в таком положении. Вследствие этого на дорожном покрытии образуются следы в виде черных полос, по которым можно определить путь водителя. У разных автомобилистов качество его торможения отличается, так как оно производится с помощью «мышечного чувства».

Резкое торможение используется в критических ситуациях. Водитель должен уметь сохранять бдительность, устойчивость и управляемость автомобиля при экстренном торможении, так как оно имеет свои особенности и должно быть исполнено грамотно. Минусами такого торможения является блокировка колес, износ шин, а также снижение коэффициента сцепления колес с дорогой.

Рекомендуется сводить к минимуму резкое торможение на дороге.

Прерывистое и ступенчатое торможение автомобиля

Следующие типы торможения относятся к торможению импульсивному: прерывистое и ступенчатое. Прерывистое – это, по существу, сочетание резкого торможения с растормаживанием. Водитель осуществляет периодическое нажатие на педаль тормоза, а затем полностью его отпускает. И эта процедура выполняется до полной остановки машины.

Прерывистое торможение используется на ухабистых неровных участках дорог. Не следует использовать интенсивное первоначальное тормозное торможение на большой скорости, так как нельзя допустить полной блокировки колес.

Ступенчатое торможение более применимо для экстренного торможения в сложных ситуациях, так как оно может создать минимальную длину тормозного пути. Ступенчатое торможение выполняется путем нажатия педали тормоза до упора, но до конца оно не опускается, а производится, своего рода, «прокачка» от полной блокировки колес до разблокировки.

Торможение автомобиля

При ступенчатом торможении меняется его интенсивность, но оно не прекращается. Рекомендуется применять этот вид торможения первоначально на короткой дистанции и далее увеличивать на свое усмотрение показатели интенсивности и продолжительности торможения. Устойчивость машины на дороге осуществляется за счет растормаживания.

Торможение двигателем автомобиля

Следующий вид торможения – торможение двигателем и торможение коробкой передач. В первом случае происходит отпускание педали газа при включенном сцеплении на действующей передаче. Педаль газа опускается, выжимается педаль сцепления, далее отключается повышенная передача. Затем опускается педаль сцепления и нажимается педаль акселератора в случае, если передача выключена. В конце выжимается сцепление, включается пониженная передача, и опускается педаль сцепления. Данный прием торможения основан на том, что двигатель становится потребителем энергии, не получая горючей смеси, но получая от трансмиссии крутящий момент. Преимущества этого торможения заключается в равномерном распределении тормозящего усилия между ведущими колесами машины, а также высокая устойчивость к заносам.

Торможение коробкой передач автомобиля

Торможение коробкой передач подразумевает равномерное постепенное переключение на низшие передачи для того, чтобы снижать скорость машины. При этом можно перескочить через несколько передач, только это будет иметь свои последствия — потерю маневрирования и управляемости машины. Этот способ торможения хорошо применять для плавного снижения скорости на тех участках дороги, где сложно проезжать без особой сноровки, например на мокрых спусках.

Хороший водитель должен уметь пользоваться каждым из вышеперечисленных способов, так как дороги везде разные, а разница способов торможения, как вы понимаете, подразумевают то, что для каждого «другого» участка дороги свой способ торможения.

Видео приемы и способы торможения автомобиля

https://seite1.ru/xodovaya-chast/regulyatora-tormoznyx-silnastrojkaneispravnostizamenaproverkafotovideo/.html
https://xn--34-6kc4bzaa.xn--p1ai/sovety/tormoznaya-sistema-avtomobilya.html
https://foram.ru/sovetyi-voditelyam/kak-pravilno-tormozit-vidyi-i-sposobyi-tormozheniya-avtomobilya

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *