От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Содержание

Автомобильный портал. Ответы на вопросы

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Если бы не глобальное оледенение, по Земле до сих пор бы бродили динозавры. А если бы не проигрыш армий Сирии, Египта, Ирака и Иордании в так называемой войне Судного дня с Израилем в октябре 1973 года, то не было бы последующего нефтяного кризиса, то есть топливного бойкота арабскими странами Америки и Европы. И кто знает, как бы пошла тогда эволюция основного кузовного материала — стали?

В плоть до семидесятых годов прош-лого века кузова по-прежнему производили преимущественно из дешевой низкоуглеродистой стали с высоким содержанием кремния и кислорода — ее еще называют кипящей. Разве что к пятидесятым годам миллиметровые внешние панели для снижения себестои-мости и массы сделали тоньше — толщиной 0,8 мм. А из более качественной спокойной стали, пластичность которой выше благодаря пониженной концентрации кремния и кислорода, штамповали лишь некоторые сложные детали.

Но тут грянула война Судного дня, а за ней — и нефтяной кризис. Очереди на заправках, снижение популярности исконно американских больших, тяжелых и мощных машин. В 1978 году в США ввели средние корпоративные нормы по расходу топлива, известные как CAFE (Corporate Average Fuel Economy). А еще как раз в те времена в Америке всерьез озаботились пассивной безопасностью. И автопроизводители оказались в тисках. С одной стороны, машины должны были стать безопаснее, но с другой — экономичнее. Может, вообще отказаться от стали?

Прогресс металлургии, конечно, не стоял на месте. Сталелитейные компании в те времена уже выпускали автомобильный прокат повышенного качества IF (Interstitial Free, без фаз внедрения) с очень низким содержанием углерода (около 0,002%) и азота и с микролегированием титаном и ниобием. Но в 1975 году, согласно данным аналитического агентства Ducker, на сталь повышенной прочности, в том числе на IF, в конструкции кузова в среднем приходилось менее 5%.

В конце 70-х к интенсивным разработкам в области несущих алюминиевых кузовов приступили Porsche и Audi, а в 1984 году Pontiac Fiero и Renault Espace обзавелись пластиковыми наружными панелями. И вот тут крупнейшие поставщики стального проката задумались. Ведь переход автоконцернов на альтернативные материалы грозил потерей многомиллиардных прибылей!

Несущий кузов проекта ULSAB, спроектированный почти двадцать лет назад, был невероятно передовым. Доля мягких сталей в нем составляла менее 8%, все остальное — обычная «высокопрочка» плюс несколько усилителей из сверхвысокопрочной стали. Масса — около 200 кг. Многие технические решения с успехом применяются и в современных кузовах: так называемые Tailored Blanks, то есть детали из заготовок переменной толщины и прочности, гидроформинг, а также соединения лазерной сваркой и клеем

В начале 1990-х свыше тридцати крупнейших производителей стали и металлопроката, в том числе Nippon, Posco, Tata, Krupp и U.S. Steel, объединились в консорциум под названием ULSAB (Ultralight Steel Auto Body) для разработки облегченного стального кузова. Проект, к которому привлекли компанию Porsche Engineering, стартовал в 1994 году. В качестве точки отсчета инженеры усреднили характеристики нескольких серийных автомобилей того времени, включая BMW пятой серии, Mercedes Е-класса, Хонду Accord и Lexus LS. В итоге масса референсного кузова оказалась 271 кг, а жесткость на кручение — 11500 Нм/градус. Спустя четыре года был сделан опытный образец кузова, в котором суммарная доля высокопрочных (предел текучести 210—550 МПа) и сверхвысокопрочных сталей (свыше 550 МПа) составила 90% при толщине деталей от 0,65 до 2 мм. Массу удалось снизить на 70 кг, а жесткость на кручение выросла в два раза!

А экономический расчет специалистов Porsche Engineering показал, что всего через два года массового выпуска себестоимость таких кузовов будет не выше, чем у тогдашних серийных.

Как мы знаем, это не помешало расширять применение алюминия таким компаниям, как Audi, Jaguar, BMW или Mercedes-Benz. Но самым востребованным кузовным материалом до сих пор остается сталь: консорциум ULSAB собирался не зря.

Впрочем, концерн BMW и без того постоянно увеличивал долю высокопрочных сталей. Если в 1981 году в кузове пятой серии поколения E28 было всего четыре процента «высокопрочки», то через семь лет в Е34 — двенадцать, а в E39, дебютировавшей в 1995-м, — уже сорок.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Сталь получают из чугуна, снижая в нем концентрацию углерода. В первой половине ХХ века производство стали осуществлялось в мартеновских печах. Туда загружали чугун, стальной лом, железную руду и известняк — и плавили шихту, используя коксовый или природный газ. Плавка длилась до десяти часов и требовала большого количества топлива, а качество готового продукта оставляло желать лучшего. Сейчас сталь получают кислородно-конвертерным способом: в огромный сосуд (на фото) заливают жидкий чугун и продувают его технически чистым кислородом. Этот процесс гораздо эффективнее, длится меньше часа и не требует внешнего источника тепла

Сейчас в каталоге крупнейшего в мире производителя стали ArcelorMittal значится больше семидесяти разновидностей проката для автомобильной промышленности. А что в России? Увы, наши металлурги долгое время вообще не могли производить подобный качественный прокат — и лишь в 2011 году окончательно прекратили выплавлять сталь старым и неэффективным способом в мартеновских печах. Хотя в Германии, США и Японии их «потушили» еще в начале 90-х, перейдя на современный кислородно-конвертерный процесс. У нас же тогда только-только освоили выпуск -IF-проката. А история помнит времена, когда вазовские машины на треть состояли из импортной стали.

Самый большой, самый дорогой и самый ответственный узел легкового автомобиля — его кузов. Он определяет не только основные потребительские свойства (скорость, комфорт, эстетическое восприятие автомобиля в целом и т. д.), но и безопасность водителя и пассажиров. Поэтому требования к кузову неуклонно повышаются.

Кузов первых моделей ВАЗ, так называемой «классической» компоновки, соответствовал требованиям своего времени и представлял собой конструкцию, которая состояла из нескольких крупногабаритных деталей (крыша, капот, панели пола, щиток передка) и большого числа сварных узлов, включающих относительно простые мелкие детали. Конструкция определяла и требования к материалам, и технологиям штамповки и сварки.

Так, основную массу деталей выполняли из холоднокатаного проката стали 08Ю категорий вытяжки СВ, ОСВ, а наиболее простые детали — из сталей 08кп и 08пс категории вытяжки ВГ. Прокат первой группы отделки поверхности, соответствующий категориям вытяжки ОСВ и ВОСВ для лицевых деталей кузова, закупали главным образом за рубежом.

Комплекс сварки кузовов классических моделей (ВАЗ-2101 — ВАЗ-2107) состоял из поточных линий на базе многоточечных сварочных машин и стендов ручной сварки. То есть оборудования, предназначенного для сварки непокрытых сталей. Оно отличалось высокой производительностью, относительной компактностью, надежностью в эксплуатации, хорошей ремонтопригодностью и в то же время — недостаточной гибкостью, что не способствовало изменению конструкции деталей в процессе модернизации автомобиля или смены модельного ряда, имело ограничения по сварке деталей из оцинкованных сталей. В частности, в последнем случае существенно снижало свою производительность из-за необходимости остановок для проведения периодической ручной зачистки электродов контактных машин.

К моменту постановки на производство семейства автомобилей ВАЗ-2108 требования к кузову изменились. Соответственно другими стали и подходы к его проектированию. Например, кузов ВАЗ-2108, в отличие от кузова ВАЗ-2101, не имеет деталей и узлов, устанавливаемых в процессе доварки черного кузова. Он состоит из каркаса и съемных узлов (двери, капот, крылья), а каркас — из пяти основных узлов: пола, правой и левой боковин, рамы ветрового окна и крыши. В результате конструкция стала более технологичной, в ней снизилось число деталей и узлов. К примеру, если кузов автомобиля ВАЗ-21013 состоял из 536 деталей, то кузов ВАЗ-2108 — из 368. Благодаря этому удалось уменьшить и число сборочно-сварочных операций, и число сварочных точек. (К примеру, последних с 7300 до 4300.) При этом доля сварки в автоматических линиях увеличилась с 45 до 96 %. Итог трудоемкость изготовления кузова снизилась с 9,89 до 6,7 нормо-ч, численность рабочих в цехах сварки — на 350 чел.

Автомобили семейства ВАЗ-2108 были первыми среди отечественных АТС, где для повышения коррозионной стойкости кузова стали применять детали из электрооцинкованного проката. Всего таких деталей 16, а их масса составляет

11 % обшей массы кузова.

Появление нового типа материала серьезно повлияло и на технологию изготовления кузова. Дело в том, что штамповать детали из оцинкованных сталей гораздо сложнее: покрытие существенно влияет на коэффициент трения в зоне контакта заготовки со штампом и, следовательно, на условия течения металла в процессе формовки и вытяжки; поверхностный слой имеет склонность к шелушению и отслоению в условиях пластической деформации металла-основы и контактного воздействия со стороны штампового инструмента, В силу этих особенностей штамповка электрооцинкованного проката требует дополнительных затрат и ужесточения технологической дисциплины. Например, при рубке заготовок, чтобы избежать отслоений покрытия в зоне реза и последующего их переноса с кромок заготовок на зеркало штампа, нужно очень точно выдерживать зазоры в режущем инструменте. Иначе в процессе штамповки, когда контактные давления очень высоки, сдираемые микрочастицы цинка привариваются к поверхности штампа, постепенно коагулируют и накапливаются в виде достаточно крупных металлических наростов, которые травмируют поверхность листа, оставляя на ней дефекты в виде выпуклостей, что совершенно недопустимо для лицевых деталей кузова.

Вторая группа особенностей оцинкованных сталей — их худшая, по сравнению с непокрытым металлом, свариваемость и повышенный износ сварочных электродов. Потому, что цинковое покрытие увеличивает контактные электросопротивления в парах «электрод — деталь» и «деталь — деталь». Следовательно, уменьшает сварочный ток и количество теплоты в зоне свариваемого соединения. Чтобы компенсировать это явление, сварочный ток приходится увеличивать, в зависимости от типа покрытия, на 5-15 %. Но в условиях высоких токов, температур и давления материал электрода начинает активно взаимодействовать с цинком, образуя легкоплавкие эвтектики (латуни). В итоге электрод по микронеровностям очень «охотно» приваривается к поверхности листа, а при размыкании контакта вызывает повышенную эрозию контактной поверхности. При этом масса данного участка поверхности возрастает, значит, снижаются плотность тока в контакте и диаметр ядра сварочной точки. Кроме того, постепенно образующийся слой латуни на контактной поверхности электрода повышает его электрическое сопротивление и соответственно снижает количество теплоты, выделяющейся в сварном соединении, что также уменьшает диаметр ядра сварной точки.

Было очевидно, что решить перечисленные проблемы можно только одним способом — перейти на оборудование, способное автоматически регулировать величины сварочного тока и периодически зачищать рабочую поверхность электродов. Что и сделали: ВАЗ перешел на автоматические линии и посты, оснащенные робототехническими комплексами, созданными в сотрудничестве с фирмами «Сиаки» и «Кука».

Следующим этапом эволюции кузова стали разработка и постановка на производство автомобилей семейства ВАЗ-2110. Данный этап во многом перенял лучшие технические решения, опробованные на семействе ВАЗ-2108. Например, общее число деталей кузова, несмотря на более сложную конструкцию, снизилось, по сравнению с ВАЗ-2108, на 20 шт., а число сварочных точек возросло лишь на 478 (10 %). Однако необходимость обеспечения современных требований экономики заставила улучшать аэродинамику автомобиля и, как следствие, усложнять форму деталей. Что повлекло за собой увеличение объемов применения высокотехнологичных штампуемых сталей, еще большее ужесточение требований к оборудованию и штамповой оснастке. Поэтому под проект пришлось закупить и смонтировать пять новых автоматических вырубных и штамповочных линий, в том числе уникальный для России шестипозиционный пресс-автомат усилием 32 тыс. кН с гидравлической маркетной подушкой на первой позиции, выпускаемый немецкой фирмой «Эрфурт» и предназначенный для штамповки крупногабаритных деталей. Кроме того, под техническим руководством ВАЗа отечественными металлургическими комбинатами ОАО «НЛМК» (Липецк), «Северсталь» (Череповец), «ММК» (Магнитогорск), «АО ЛМЗ» (Лысьва) совместно с ЦНИИЧМ имени Бардина (Москва) было освоено производство современных автолистовых сталей, в том числе с цинковыми покрытиями, что позволило полностью обеспечить нынешнюю потребность отечественной автомобильной промышленности в качественном металлопрокате. В том числе практически всю потребность ВАЗа в холоднокатаном листе первой группы отделки поверхности (-155 тыс. т в год, из них 41 тыс. т — оцинкованный прокат), в горячеоцинкованной (-9 тыс. т в год) и электрооцинкованной (-76 тыс. т в год) сталях.

В настоящее время с целью повышения качества штампуемых деталей проводятся работы с металлургическими комбинатами по использованию нового поколения консервационно-технологических смазок для листового проката, внедрению специальных моечных машин для особо ответственных лицевых деталей кузова. Нарабатываются мероприятия по исключению попадания дополнительных загрязнений на поверхность проката в процессах переработки (резка заготовок, хранение, транспортировка и штамповка).

Объем применения оцинкованных сталей в кузове ВАЗ-2110 достиг 52 %его массы. Что в сочетании с дополнительной обработкой опасных зон специальными защитными составами и высококачественным лакокрасочным покрытием гарантирует защиту его деталей от сквозной коррозии на срок до шести лет. Однако рост числа деталей, выполняемых из оцинкованных сталей, еще более обострил проблему обеспечения качества штамповки. В частности, чтобы уменьшить налипание цинка, необходима дополнительная операция ручной периодической очистки зеркала штампа. Что, безусловно, сказывается на трудоемкости изготовления деталей и производительности оборудования. Поэтому ВАЗ проводит подготовительные работы по закупке лицензии и освоению технологии хромирования формообразующих поверхностей штампов, которое, как известно, позволяет решить проблему на современном уровне.

Широкое применение оцинкованных сталей потребовало принятия новых решений и в отношении всего сварочного комплекса, в том числе значительного усложнения, как механики, так и систем управления сварочных линий: теперь общее число используемых сварочных роботов достигло 220 шт. В состав автоматических линий, кроме традиционных постов сварки, вошли посты промазки кузова мастиками перед сваркой и нанесения высокопрочного клея на стыке капота перед его зафланцовкой. В линиях сварки впервые в нашей стране в больших (

50 шт./кузов) объемах применена полуавтоматическая и автоматическая дугоконтактная приварка болтов, заменившая собой традиционную рельефную сварку, требующую пробивки отверстий в листовой детали.

Автомобиль ВАЗ-1118 — очередной шаг на пути повышения безопасности и коррозионной стойкости кузова. И хотя объем применения оцинкованных сталей здесь остался на уровне кузова автомобиля ВАЗ-2110, существенно изменилась структура этого объема: значительно увеличилась доля горячеоцинкованного проката, а доля электрооцинкованного, наоборот, снизилась, что позволило существенно увеличить поверхность деталей, защищенных цинковым покрытием. Так, если у кузова ВАЗ-2110 оцинкованная поверхность составляла 29 %, то у ВАЗ-2118 — уже 52 %.

Переход на горячеоцинкованный прокат выгоден и в экономическом отношении: технологическая себестоимость изготовления данного проката на 10-15 % ниже, чем проката электрооцинкованного. Кроме того, он более технологичен с точки зрения штамповки. Во-первых, в качестве его основы используются высокопластичные стали со сверхнизким содержанием углерода (IF-стали); во-вторых, покрытие из более мягкого металла оказывает то же влияние, что и твердая смазка, т. е. в определенной степени облегчает процесс штамповки, улучшая условия течения металла.

Проблема обеспечения свариваемости горячеоцинкованного проката решается за счет использования сварочных роботов с современными системами управления циклом сварки и автоматической зачисткой электродов. Для снижения затрат на электродные материалы применяются электроды колпачкового типа с внутренним посадочным конусом.

Вторая особенность кузова ВАЗ-1118 — более широкое, чем на ВАЗ-2110, применение низколегированных и двухфазных (ферритно-мартенситных) сталей повышенной прочности, освоенных отечественной металлургической промышленностью (НЛМК и ЧерМК). Такой переход, во-первых, увеличивает прочность и уровень пассивной безопасности кузова, во-вторых, снижает его материалоемкость (собственную массу) и положительно сказывается на динамических характеристиках, топливной экономичности и других потребительских свойствах автомобиля.

Правда, данные стали, обладают несколько меньшей, чем традиционные, пластичностью и, как следствие, ограниченными возможностями по вытяжке, повышенным пружинением, развивают большую нагрузку на штамповую оснастку и т. д. Все это учитывалось при разработке как конструкции кузова автомобиля ВАЗ-2118, так и технологии его изготовления. Например, основу технологии составляют робототехнические комплексы, изначально рассчитанные на значительное увеличение объемов применения именно горячеоцинкованной стали. Причем число роботов возросло до 360, т. е., по сравнению с комплексом сварки автомобиля ВАЗ-2110, на 64 %. При этом существенно изменился подход к построению самих автоматических линий. Роботы нового поколения грузоподъемностью 150/200/300 кг позволили перейти к технологической схеме так называемого «сада роботов», где автоматы не только выполняют операции сварки, но и манипулируют узлами в процессе доварки кузова на стационарных клещах, а также передают его с поста на пост. Что дало возможность отказаться от сложных традиционных линейных транспортеров, существенно повысить технологическую гибкость оборудования при последующих модернизациях автомобилей. А главное — применять современные специализированные пакеты компьютерного моделирования для оптимизации пропускной способности линий и емкости накопителей, проектирования, изготовления и аттестации всей технологической оснастки сварочных линий, используя математические модели деталей кузова. В конечном итоге — обеспечить собираемость кузовов и оптимальную геометрию кузова. Причем оптимизация сборочно-сварочных операций, оценка технологичности конструкции кузова на предмет доступа сварочных клещей к месту сварки выполняются еще на этапе проектирования сварочной оснастки, что значительно снижает затраты и сокращает сроки подготовки производства.

Когда мы задумываемся о пассивной безопасности пассажиров в современном автомобиле, мы представляем ремень с преднатяжителем, подушки и шторки безопасности, мало кто назовёт кузов автомобиля, а точнее его конструкцию. Именно кузов автомобиля должен обеспечить защиту пассажиров при аварии, принять на себя весь удар и оставить цельным жизненное пространство экипажа.

До 40-х годов кузов (рама) в первую очередь считался только носителем агрегатов и узлов, а жёсткость кузова способствовала сохранению автомобиля и только позже 50-х годов прошлого века, когда скорость автомобилей значительно выросла, конструкторы задумались о безопасности пассажиров. Исследователи предложили новую концепцию построения автомобиля, где кузов разделили на несколько зон, сминаемые передняя и задняя части и капсула безопасности центральная, салон пассажиров. При аварии первые деформировались, поглощая энергию удара, что позволяет снижать перегрузки, которые могут испытать пассажиры, а заодно и избежать травмы связанные с деформацией салона.

Со временем, опираясь на анализ многочисленных краш-тестов, конструкторы серьёзно изменили конструкции зон безопасности и сминаемые участки, начали исследовать и применять новые материалы, комбинировать различные свойства стали в одной детали. Широкое применение нашли сверхвысокопрочные, высокопрочные и обычные стали, алюминий и композитные материалы.

Всё чаще конструкторы автомобилей применяют высокопрочные стали, которые в несколько раз прочнее обычного проката, их доля
доходит до 20-35 %.

Рассматривая кузова современных автомобилей можно изучать металловедение. В новых автомобилях всё больше деталей из высокопрочной, ультравысокопрочной стали горячей штамповки, специального проката, алюминия с различным содержанием кремния или магния. Комбинации свойств металлов позволяют увеличивать прочность одних элементов или придавать запрограммированную сминаемость других.

Очень редко, технологии производства, возможно, применить в условиях ремонта

Улучшая структуру кузова, и увеличивая безопасность пассажиров, конструкторы задают новые задачи не только производителям автомобилей, но и многочисленным кузовным мастерским, в которые автомобили стремятся попасть после различных ДТП, для приобретения первозданной формы и внешности. В первую очередь, высокопрочные стали очень трудно править, резать и варить, порой для этого требуется специальный инструмент, имеющий не менее высокопрочные свойства, не отстающие от новых реалий. Со сваркой всё сложнее, технология производства специальных сталей не допускают перегрева деталей, что провоцирует перекос изделия или полное исчезновения первоначальных свойств. Производители автомобилей пошли разными путями, рекомендуя в ремонте использовать технологии и методы, используемые при производстве.

Сварка — пайка

Так большинство японских концернов используют метод полуавтоматической сварки пайки высокопрочной стали при низких темперах плавления проволоки медно-цинкового сплава. Для примера, сварка стальной проволокой в среде защитного газа СО2 проходит при температуре 1500-1600 градусов Цельсия, что полностью уничтожает все свойства особой стали. Сварка пайка производится при температурах ниже 900 градусов Цельсия, находясь в пределах от 860 до 890 градусов, при этом сварной шов такой находится в пределах прочности обычной сварки, а цинк, входящий в состав проволоки, соединяется с оцинковкой кузова, защищая сталь и сварной шов, от коррозии.

Контактная сварка клещами

Стандартом соединения деталей кузова автомобиля всегда считалась контактная сварка, по точкам которой, знающие автолюбители могли объявить, был ли автомобиль в аварии и какие детали были заменены. Но с применением новых сталей и способы контактной сварки изменились. Если совсем недавно, для сварки деталей хватало обычного трансформаторного аппарата контактной сварки до 5-6 тыс. ампер, то теперь условия диктуют новые правила. Аппарат контактной сварки обязан иметь клещи с пневматическим приводом, развивающие определённое усилие, ток сварки не менее 11-13 тысяч, специальный, определённого сечения кабель, с минимальным сопротивлением и с принудительным охлаждением жидкостью. Только в этом случае возможно соединение деталей современных кузовов из высокопрочной стали.

АЛЮМИНИЙ И КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

Весной 1991 г. фирма Honda поставила на немецкий рынок партию легковых автомобилей Honda NSX с цельно алюминиевыми кузовами. Впрочем, тогда раскупили не так уж много машин, поскольку речь шла о спортивных моделях с кузовом купе. Тем не менее, появление серийных легковых автомобилей с алюминиевым кузовом свидетельствовало о наступлении новой эры в автомобилестроении.

В качестве примеров цельноалюминиевых автомобилей приведем Audi A8 и Jaguar XK. Заманчиво получить, как в случае с A8, автомобиль представительского класса весом, равным весу Audi A6 — седану классом ниже. Но создание кузова из алюминия сродни постройке самолета. Проблем тут гораздо больше, чем может показаться на первый взгляд. Алюминиевые сплавы плохо штампуются, свариваются только в среде инертного газа и гораздо лучше стальных аналогов передают вибрации. Для их скрепления в одном и том же автомобиле могут быть применены аргоновая сварка, клепка, склейка и даже болтовые соединения. Помимо этого помятое в результате ДТП алюминиевое крыло, часто, невозможно отрихтовать, а покраска легкосплавных деталей имеет массу технологических нюансов. В отличие от стальных конструкций в алюминиевых кузовах применяются не только листы, но и всевозможные профили (прямоугольные трубы, уголки), а также широкий ассортимент специальных литых деталей.

Вам будет интересно  Виды автомобильных шпаклевок и их применение

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Первым в серийном производстве кузова стал применять алюминий концерн Audi>. Кузова его моделей A8, а затем и A2 сделаны полностью из алюминиевых сплавов

Алюминиевый кузов AUDIA8, созданный по технологии Audi Space Frame (ASF), весит всего 231 кг. Детали соединяют 1847 заклепок, 632 винта, 202 точки сварки, 25 метров швов газовой и 6 метров лазерной сварки, а также 44 метра клееных соединений.

Клепальные системы

В производстве автомобилей всё больше применяются высокопрочные стали, алюминий, магний, композиционные материалы.

Чтобы добиться определенных параметров, многие конструкторы проектируют кузова, сочетающие детали из разных материалов. Это позволяет использовать их положительные качества и обходить присущие им недостатки. Примером такой гибридной конструкции может быть кузов автомобиля Mercedes-Benz CL, при изготовлении которого применяется сталь, алюминий, магний и пластик. Сталь идет на каркас моторного отсека и днище багажного отделения, а также на отдельные элементы каркаса. Из алюминия изготавливают ряд наружных панелей и деталей каркаса. Из магниевого сплава делают каркас дверей. Передние крылья, крышка багажника выполняются из пластика. Как вариант возможна конструкция кузова, в которой каркас изготовлен из стали и алюминия.

Технологии сварки металлов с различными электрохимическими свойствами, в данном случае — стали и алюминия. Компания Honda Motor утверждает, что ей удалось добиться прочного соединения этих двух металлов, благодаря особому механизму сварки. Он подразумевает своеобразное «вкручивание» стальной части детали в алюминиевую часть под давлением. Это лишь общее описание принципа — исчерпывающих деталей компания не приводит. Итак, сталь и алюминий не свариваются между собой, тем более в условиях ремонта, мало того, металлы соединяют между собой только при наличии специальной изоляции, преимущественно при помощи заклёпок и резьбовых соединений. Если в непосредственный контакт с алюминием входит какой-либо другой металл, вследствие разных электрических потенциалов, между ними возникает гальваническая пара, что приводит к коррозии алюминия. Для соединения стали и алюминия используются специальные клеи, предотвращающие химическое разрушение материала.

XPress 800 — клепальное пневмогидравлическое устройство, с мощностью до 50кН, для заклепывания и расклепывания: самопроникающих заклепок, заклёпок FFR, вытяжных заклёпок, вытяжных заклепочных гаек и штамповки

Среди большого числа отраслей промышленности и направлений применения стали, разработка и использование сталей с высокими эксплуатационными характеристиками способствуют снижению выбросов парниковых газов.

Сталь является одним из самых эффективных современных строительных материалов. Она обладает самым высоким отношением предела прочности к массе среди традиционных материалов, а также очень износоустойчива. В настоящее время используется свыше 20 млрд тонн стали в виде самых разнообразных изделий. Сталь может бесконечно подвергаться повторной переработке, позволяя создавать новую продукцию из старой без какой-либо потери прочности, пластичности или любых других эксплуатационных характеристик. Именно поэтому во всем мире сталь остается наиболее предпочтительным материалом для строительства и промышленности.

Новые химические составы высокотехнологичных сталей позволяют автопроизводителям изготавливать более прочные и легкие транспортные средства, потребляющие меньше энергии. Сталь имеет значительные преимущества для строительства башен ветровых турбин вследствие ее прочности и долговечности. Воздействие на окружающую среду сведено к минимуму, так как сталь может повторно перерабатываться без ограничений. Прочность стали также позволяет разработчикам использовать меньше материала без ущерба для конструктивных характеристик сооружений. Сталь также является частью инновационных технологий, позволяющих снизить энергопотребление в зданиях.

Разработка под определенные сферы применения

Сталь может быть разработана для конкретных конечных потребителей и соответствовать определенным требованиям по прочности, долговечности и утилизации в конце эксплуатационного цикла. Новые и сложные производственные процессы также позволяют внедрять экологически ответственные технологии производства.

Новые области применения стали вытеснили традиционные материалы. Это позволило сократить выбросы парниковых газов, если принимать во внимание весь жизненный цикл изделия. В настоящем информационном бюллетене представлены некоторые примеры таких сфер применения стали.

Сталь в транспортной отрасли

Сталь применяется в железнодорожном транспорте при строительстве поездов и железных дорог, а также создания инфраструктуры. Поездки на короткие и средние расстояния по железной дороге сокращают время в пути и выбросы CO2на 1 км путипо сравнению практически со всеми другими видами транспорта.

Автопроизводители в настоящее время используют ряд высокопрочных сталей, чтобы значительно уменьшить толщину стальных конструкций кузова. Снижение веса означает, что транспортные средства потребляют меньше топлива и выделяют меньше СО2, при этом не страдает безопасность автомобиля, а его стоимость увеличивается незначительно или остается прежней.

Особо высокопрочные стали (AHSS) в настоящее время применяются практически во всех новых разработках транспортных средств. Сегодня транспортное средство состоит на более чем 50% из стали, а использование AHSS позволяет создать облегченную оптимизированную конструкцию, способствующую повышению безопасности, снижению расхода топлива и количества выбросов парниковых газов на протяжении всего времени эксплуатации автомобиля.

При ежегодном производстве 71 млн легковых автомобилей, такой переход от традиционных сталей к сталям AHSS оказывает огромный эффект. Если типичный пятиместный автомобиль изготовлен из новых марок стали AHSS и разработан с использованием оптимизированных технологий, то за весь срок его службы снижение выбросов парниковых газов составляет примерно 2,2 тонны по сравнению с обычными марками. Это значение превышает общий объем выбросов CO2, при производстве всей стали для этого транспортного средства. Если бы конструкция кузова всех автомобилей, произведенных в 2008 году, была выполнена из стали AHSS, то снижение выбросов эквивалентов CO2составило бы 156 млн тонн.

В конструкции кузова автомобиля Ford Fiesta 2008 г.в., например, широко используются ультра высокопрочные стали. Концерн Ford утверждает, что «значительное количество специализированных сталей, включая борсодержащую и двухфазную сталь, — секрет качественного скачка в жесткости несущей конструкции Fiesta при малом весе». Ожидается, что выбросы CO2 составят менее 100 г на км.

Еще один новый автомобиль, Mazda 2 2008 г.в., имеет снаряженную массу 950 кг, что на 100 кг меньше, чем у его предшественника. Такое снижение веса отчасти кроется в изменении конструкции и облегчении кузова, состоящего более чем на 40% из высокопрочной стали. Следовательно, снижается нагрузка на подвеску и тормозную систему. Эти и другие усовершенствования конструкции означают, что топливная экономичность этой новой модели улучшена на 15% по сравнению с предшествующей, что, соответственно, снижает количество выбросов CO2.

В премиум классе MercedesC-Class2008 г. является одним из немногих автомобилей, получившим признанный на международном уровне экологический сертификат за высокие показатели на протяжении всего срока существования изделия (LCA). Корпус автомобиля состоит на 70% из сплавов высокопрочных сталей, что позволило снизить выбросы CO2 одного автомобиля за весь его жизненный цикл на 9 тонн.

Сталь в энергетической отрасли

Сталь необходима как для производства, так и снабжения энергией. Она применяется для строительства опор линий электропередач и морских нефтяных платформ, а также для армирования бетонных конструкций на гидроэлектростанциях. Без стали инфраструктура поставки электроэнергии в наши дома была бы крайне неэффективна.

Сталь находит настолько широкое применение в современных конструкциях, что мы зачастую не осознаем, насколько они эффективны. Ярким примером являются стальные башни ветровых турбин, которые сейчас устанавливаются по всему миру. Как правило, более высокие башни позволяют получить повышенную производительность в плане генерации энергии, так как скорость ветра увеличивается на большей высоте.

Новые стали, используемые в строительстве таких башен, имеют гораздо более высокую прочность на единицу массы, чем другие материалы, так что более высокие башни могут быть возведены с гораздо меньшей нагрузкой на конструкцию. Более низкий вес также позволяет производить такие башни секциями по 30 м, а затем собирать и устанавливать их на месте.

В ходе текущих исследований появляются все новые и новые стали, еще более прочные, чем их предшественники, следовательно, сводится к минимуму масса будущих башен. В результате, вес башни (на установленную мощность в кВт) снизился примерно на 50% за последние 10 лет. Например, высота типичной современной башни ветроэлектростанции HornsRev в Дании составляет 70 м, а вес — всего 140 тонн. Это означает снижение веса на 50% и предотвращение выбросов более 200 тонн СО2 при производстве каждой башни по сравнению с ее предшественницами всего лишь10-летнейдавности.

Сталь в зданиях

Новые виды стали также применяются в современных системах солнечного отопления крупных зданий и складов. Например, канадская воздушно-отопительная система SolarWall ® , недавно установленная на военной базе в США, предназначена для предотвращения выброса более 1800 тонн CO2 в год. Также предполагается, что она даст экономию топлива 46000 ГДж в год.

Другим передовым направлением применения стали для зданий является кровельная система Arsolar с солнечными батареями, разработанная компанией ArcelorMittal. Система Arsolar преобразует солнечную энергию в электричество. Каждый кровельный модуль Arsolar состоит из фотоэлектрических сэндвич-панелей, закрепленных на оцинкованных стальных кровельных панелях. Данная система предотвращает выброс 30 тонн CO2 в год на каждые 45м2 установки.

Сталь в судостроении

В судостроении традиционно используют конструкционную толстолистовую сталь для изготовления корпусов судов. Современный стальной толстый лист имеет гораздо более высокую прочность на разрыв, чем его предшественники, поэтому он гораздо больше подходит для эффективного строительства крупных контейнерных судов.

Доступен особый тип толстого листа с предусмотренной при проектировании устойчивостью к коррозии, идеально подходящий для строительства нефтяных танкеров. Такие стали позволяют строить более легкие суда, чем раньше, или суда с большей вместимостью при том же весе, предоставляя существенные возможности экономии потребления топлива и, следовательно, снижения выбросов CO2.

Прогрессивные стали, используемые в виде листовой стали, также нашли применение в ряде смежных отраслей. Морские буровые вышки, мосты, железнодорожные вагоны, цистерны и сосуды под давлением, атомные, тепловые и гидроэлектростанции — все эти области применения выигрывают благодаря характеристикам современных сталей.

Важность оценки жизненного цикла стали

Приведенные выше примеры — лишь некоторые из множества способов применения прогрессивных сталей в нашей повседневной жизни. Существует много других направлений. Общим фактором является то, что они основаны на современных сталях, разработанных для специфических областей применения и обладающие характеристиками и преимуществами, специальным образом подобранные для каждой сферы применения.

При рассмотрении вопроса о выбросах парниковых газов, ключевым фактором в понимании реального воздействия материала на окружающую среду является Оценка его жизненного цикла (LCA). Данный подход учитывает общие выбросы парниковых газов, выделяющихся при ее производстве, во время использования и по окончании жизненного цикла (переработка или утилизация) продукции.

На первый взгляд материалы, весящие меньше стали, такие как алюминий, магний и пластик, могут показаться интересными альтернативами. Однако, когда во внимание берется весь жизненный цикл материала, у стали нет конкурентов благодаря ее прочности, износоустойчивости, пригодности к переработке и многофункциональности.

Жизненный цикл стальной единицы в многокомпозитной продукции

Некоторые факты о стали

  • Сталь на 100% может быть переработана по окончании жизненного цикла, либо повторно использована до переработки.
  • При производстве кузова типичного пятиместного автомобиля с применением высокопрочной стали AHSS за весь его жизненный цикл выделяется примерно на 2,2 тонны меньше парниковых газов.
  • Уменьшение выбросов CO2 посредством переработки стальной упаковки в Европе в 2006 году было эквивалентно объему CO2, который в том же году был выброшен в атмосферу 1,6 млн автомобилей, (исследование проводилось на примере автомобилей, например, Ford Focus с дизельным двигателем объемом 1,8 л) со степенью выбросов CO2 — 137 г/км, с пробегом 20 000 км в год.
  • Ориентировочно 459 млн тонн металлолома было переработано в 2006 году, что позволило предотвратить 827 млн тонн выбросов CO2.
  • Консервная банка является самым перерабатываемым контейнером для пищи и напитков в мире с общей степенью переработки 67%.
  • Там, где системно применяются сбор и обработка лома, степень вторичной переработки очень высока. 97% всех автотранспортных средств из потока отходов попадают в поток переработки и движущей силой этой переработки является сталь.

С оригиналом материала вы можете ознакомиться на сайте

MODERN HIGH-TECH 05ХГБ STEEL INTENDED FOR THE MANUFACTURE OF WELDED OIL AND GAS PIPES WITH IMPROVED OPERATIONAL RELIABILITY

D. KUDASHOV, G. SEMERNIN, I. PEIGANOVICH, ITC «Vyksa metallurgical plant» JSC, L. EFRON, P. STEPANOV, S. MOKEROV, CPTR «United metallurgical company» JSC (OMK)

Специалисты инженерно-технологического центра АО «ВМЗ» разработали новую трубную сталь для сварных нефтегазопроводных труб повышенной коррозионной стойкости и эксплуатационной надежности. Разработана технология производства, позволяющая гарантированно обеспечивать высокий уровень свойств основного металла и сварного соединения труб. Результаты масштабных испытаний новой стали, в том числе в условиях эксплуатации, свидетельствуют о том, что при большей технологичности трубы из новой стали по своей коррозионной стойкости в различных средах превосходят лучшие из известных аналогов.

The engineering and technology center of «VSW» JSC has developed a new pipe welded steel for oil-gas pipes with increased corrosion resistance and operational reliability. The developed technology of production, which guarantee to provide a high level of properties of base metal and welded joints of pipes. The results of large scale tests of new steel, including under operating conditions, indicate that the greater the processability of the pipes of the new steel for its corrosion resistance in various environments surpass the best of the known analogues.

Растет потребность отечественных нефтегазодобывающих компаний в нефтегазопроводных трубах, отличающихся повышенной коррозионной стойкостью. В нормативно-технической документации, как правило, требования к коррозионной стойкости нефтегазо­проводных труб из низколегированных сталей ограничиваются узким перечнем испытаний: стойкость к водородному растрескиванию (HIC), сульфидному коррозионному растрескиванию под напряжением (SSC) и общей коррозии (ОК). Положительные результаты указанных испытаний свидетельствуют лишь о стойкости продукции к коррозионному растрескиванию, связанному с воздейст­вием высокого парциального давления сероводорода. Подобные условия на территории России встречаются локально в разных регионах, а коррозионные поражения, вызванные сероводородным растрескиванием, не массовые. Таким образом, соблюдение данных требований зачастую не гарантирует высокой эксплуатационной надежности продукции в разных условиях.
Важнейшим условием обеспечения долговечности трубопровода, повышения наработки на отказ (срока безаварийной эксплуатации) является гарантированное качество каждой из его составляющих. Существенную роль играет технологичность продукции. Нефтегазопроводные трубы из низколегированных сталей, применяемые сегодня крупнейшими нефтегазодобывающими компаниями РФ, порой не технологичны. Согласно последним исследованиям, проведенным совместно с НИЦ «Термохимия материалов» (НИТУ МИСиС), в процессе сварки таких сталей, как 13ХФА и 09ГСФ, образуется ряд тугоплавких окислов, не всегда удаляемых из сварного соединения, что негативно сказывается на качестве.
Недостаточно эффективно в условиях контролируемой прокатки рулонного и листового проката и микролегирование стали ванадием, необходимое для обеспечения требуемого химического состава данных марок стали. Микролегирование дает лучшее качество при производстве бесшовных труб.

Разработка новой марки стали

В 2010 г. специалисты АО «ВМЗ» с привлечением ведущих научно-исследовательских организаций приступили к разработке инновационной трубной марки стали, которая должна отвечать следующим требованиям:От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего
– иметь наиболее востребованный класс прочности (К52);
– быть хладостойкой до -60 °С;
– быть коррозионно стойкой в различных средах;
– иметь хорошую свариваемость как в условиях завода, так и в полевых условиях;
– обладать высокой технологичностью.
Требования к механическим свойствам труб представлены в табл. 1.
Всему комплексу требований отвечает низкоуглеродистая сталь с системой легирования на основе марганца, кремния, хрома и микролегирования на основе ниобия. Строгое ограничение содержания углерода позволяет обеспечивать оптимальную микроструктуру, гарантирующую высокую хладостойкость и стойкость к коррозионному растрескиванию в сероводородсодержащих средах (HIC, SSC). В сталь 05ХГБ введен хром для повышения ее стойкости к углекислотной коррозии. Пониженное содержание углерода в стали повышает эффективность добавки хрома.
Проведенные в ООО «ИТ-Сервис» сравнительные испытания на стойкость к углекислотной коррозии образцов труб из стали 13ХФА и 05ХГБ свидетельствуют, что продукты коррозии одинаково представлены карбонатом железа и хромсодержащими соединениями (в основном – Cr(OH)3) (рис. 1). Толщина продуктов коррозии составляет 15 – 32 мкм в обоих случаях.
По сравнению с 09ГСФ и 13ХФА сталь 05ХГБ отличается повышенным, но в то же время ограниченным содержанием марганца. Увеличенное содержание марганца необходимо для повышения технологичности сварки без потери стойкости к водородному растрескиванию. В соответствии с литературными данными (R. Pöpperling), сталь с содержанием углерода 0,06 % может содержать до 1,20 % марганца без ухудшения ее стойкости к растрескиванию. В то же время повышение содержания марганца по сравнению со сталью 13ХФА позволяет обеспечивать стабильный уровень механических свойств при более низком содержании углерода, а также увеличить соотношение /, важное с точки зрения свариваемости, в особенности при сварке ТВЧ (HFW).
Одним из основных микролегирующих элементов стали 13ХФА является ванадий. Данная система микролегирования наиболее эффективно обеспечивает прочность и вязкость стали после проведения термической обработки по режиму «закалка + отпуск». Для обеспечения механических свойств стали 05ХГБ в условиях контролируемой прокатки ванадий заменен на другой карбидообразующий элемент – ниобий. Исследования сварных соединений труб из стали 13ХФА и 05ХГБ, а также выполненный термодинамический анализ свидетельствуют, что при сварке ТВЧ стали 13ХФА образуются более тугоплавкие окислы. Это связано с отличиями в химическом составе стали: в содержании углерода и отношении концентраций марганца и кремния (табл. 2).От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего
Благодаря возможности достижения благоприятного соотношения / в стали 05ХГБ, при сварке ТВЧ образуются более легкоплавкие окислы. В связи с этим возможно увеличение содержания хрома до 1 % без ухудшения качества сварного соединения.
Впервые при разработке химического состава стали учитывались особенности производства электросварных труб сваркой ТВЧ и особенности эксплуатации, в связи с чем пришлось решать ряд принципиальных вопросов производства проката и высококачественной заготовки по схеме производства литейно-прокатного комплекса: в том числе – формирования бездефектной заготовки, снижение ликвации в осевой зоне сляба, получение сверхнизкого содержания серы (менее 0,002 масс. %) и формирования мелкозернистой структуры в готовом прокате. Был разработан и реализован ряд технологических решений: оптимизация состава шлака для прохождения глубокой десульфурации; модифицирование расплава редкоземельными металлами; подбор режимов вторичного охлаждения и мягкого обжатия при разливке; ускоренное охлаждение раската после черновой стадии; ускоренное охлаждение проката на отводящем рольганге перед смоткой в рулон. В результате проведенных мероприятий трубы из данной марки стали наряду с высокой коррозионной стойкостью обладают повышенным ресурсом по хладостойкости (рис. 2). Значительное снижение показателей ударной вязкости наблюдается только при температурах ниже -80 °С. При этом доля вязкой составляющей в изломе находится на уровне 80 – 100 % до – 70 °С. Такие показатели открывают потенциал стали для применения при разработке арктических месторождений.

Оценка коррозионной стойкости

Проблема обеспечения коррозионной стойкости неф­тегазопроводных труб из низколегированных сталей осложняется многообразием механизмов коррозионного разрушения в условиях эксплуатации, а также ограниченностью лабораторных методов оценки, позволяющих прогнозировать данную характеристику. Несмотря на это при разработке новых видов продукции в сегменте нефтегазопроводных труб повышенной коррозионной стойкости необходимо оценивать реальный уровень данного показателя. Программа-минимум в данном случае – сравнение коррозионной стойкости с существующими аналогами, максимум – определение с достаточной точностью наработки на отказ труб (срок безремонтной эксплуатации) для конкретных условий или региона.
Разумеется, невозможно объективно оценить коррозионную стойкость продукции из низколегированной стали при помощи одного определенного метода. По характеру и условиям проведения существующие способы оценки коррозионной стойкости можно разделить на: 1) лабораторные испытания; 2) стендовые испытания в модельных средах; и 3) опытно-промышленные испытания.
При преимуществах и недостатках каждого из них использование комплекса методов дает относительно объективную картину. Разработанная сталь 05ХГБ прошла огромный путь – от лабораторных коррозионных испытаний до опытной эксплуатации действующего трубопровода.

Стендовые испытания

Перспективным направлением считается применение стендовых испытаний в лабораторных установках, имитирующих условия эксплуатации. Принципиальная схема установки, созданной специалистами ГУП «ИПТЭР», в которой испытывались на коррозионную стойкость трубы из стали 05ХГБ в сравнении с аналогами, – на рис. 3.
Моделируя условия эксплуатации трубопроводов и их воздействие на материал, испытания проводили 14 – 30 сут, непрерывно производя контроль фоновой скорости коррозии при помощи метода LPR. При правильном подборе испытательной среды такой экспозиции достаточно для реализации механизмов общей и локальной коррозии. На рис. 4 представлены микрофотографии поверхности образцов после испытаний продолжительностью 14 сут в модельной среде. Видны локальные язвенные повреждения.
Модельные среды разрабатывались на основании анализа эксплуатационных характеристик действующих трубопроводов. Учитывались скорость потока, давление, температура, расход жидкости и компонентный состав смеси коррозионно-активных газов (табл. 4). От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего
Принцип испытаний состоит в том, что подготовленные надлежащим образом образцы сталей устанавливаются в испытательные ячейки модели трубопровода (рис. 3, поз. 1). Буферная емкость (рис. 3, поз. 2) заполняется моделью минерализованной подтоварной воды. На компьютере задаются параметры модели в части обеспечения нужного парциального давления наиболее коррозионно-активных компонентов (H2S и CO2). При необходимости задаются количество растворенного в воде кислорода, а также механических примесей. Скорость жидкости регулируется частотным преобразователем, который воздействует на частоту вращения центробежного насоса и измеряется ультразвуковым расходомером. Температура поддерживается с помощью блока терморегулятора, оснащенного нержавеющим ТЭНом и термодатчиком. Через заданное количество времени образцы извлекаются, и путем замера остаточной массы определяется скорость коррозии в мм/год. Скорость локальной коррозии определяется путем оценки глубины питингов/язв методом двойной фокусировки на оптическом микроскопе.
Преимущество данного метода оценки коррозионной стойкости состоит в возможности прогнозировать эксплуатационную надежность материала в тех или иных условиях. То есть в отличие от натурных испытаний, где кроме подтоварной воды присутствует в различном соотношении нефтяная и газовая фракции, в данном случае агрессивная среда в равной степени воздействует на образцы весь период испытаний. При этом исключаются обстоятельства, связанные с эксплуатацией трубопроводных систем (неоднородность среды, отключение, ингибиторная защита, кислотная обработка и т.д.). С целью определения влияния химического состава стали и состояния поставки на коррозионную стойкость в различных условиях были проведены несколько серий испытаний образцов различного сортамента (табл. 3).
Результаты сериальных коррозионных испытаний в модельных средах (не менее двух повторений по три образца для каждой среды) свидетельствуют, что выбор марки стали очень важен для обеспечения коррозионной стойкости в разных условиях. При этом сталь 05ХГБ по средним показателям общей и локальной коррозии незначительно уступает стали 08ХМФЧА, но превосходит все остальные испытанные марки стали (рис. 5). Наиболее важно то, что образцы из 05ХГБ в различных средах показывали стабильно наиболее низкие скорости коррозии.


Натурные испытания

Несмотря на ряд преимуществ, данные исследования направлены на оценку коррозионной стойкости материала, а не изделия. В этой связи натурные испытания играют неотъемлемую и наиболее важную роль при прогнозировании эксплуатационной надежности нефтегазопроводных труб.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Как правило, применяются два типа испытаний: гравиметрические с использованием образцов-свидетелей и байпасные с применением испытательных катушек (патрубков). При оценке коррозионной стойкости труб из стали 05ХГБ применялись оба типа испытаний.
Наиболее показательны байпасные коррозионные испытания, так как в данном случае можно прогнозировать целесообразность применения изделия, а не только материала. Основной недостаток подобных испытаний заключается в их продолжительности, измеряемой, как правило, годами. В то же время использование определенных подходов позволяет существенно сократить срок экспозиции. В частности, к ним можно отнести:
От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего
– выбор объекта для монтажа байпасного стенда с гарантированно высокой фоновой скоростью коррозии;
– предварительный мониторинг фоновой скорости коррозии методами LPR или ER с использованием средств телеметрии;
– мониторинг остаточной толщины стенки испытательных и контрольных катушек с определенной периодичностью, устанавливаемой в зависимости от агрессивности перекачиваемой среды;
– контроль за состоянием объекта (исключение ингибиторной обработки в период проведения испытаний и т.д.).
Использование данного подхода позволяет сократить срок испытаний до 10 – 12 месяцев с получением результатов, достаточных для прогнозирования целесообразности применения продукции в данных условиях.
В настоящее время завершены байпасные коррозионные испытания в двух регионах: в Западной Сибири испытания проводились в условиях двух месторождений АО «Газпром нефть–Ноябрьскнефтегаз», в Республике Коми – в условиях двух месторождений ООО «ЛУКОЙЛ- Коми» (табл. 5).
Проведенные расчеты динамики локальной коррозии, основанные на данных диагностики остаточной толщины стенки, свидетельствуют, что наиболее активен коррозионный процесс в начальной стадии.
Расчет скорости осуществляли по формуле (1):
VTi = VT1 x (Ti – T1)-0,33619459, (1)
где VTi – скорость локальной коррозии в i-й момент времени эксплуатации (мм/год);
VT1 – скорость локальной коррозии в начальный период эксплуатации (мм/год);
Ti – i-й момент времени эксплуатации (сутки);
T1 – начальный момент эксплуатации (сутки).
В обоих из рассмотренных вариантов получено, что скорость локальной коррозии стали 05ХГБ во весь период испытаний ниже, чем сравнительных образцов.

Вам будет интересно  Защита автомобилей антигравийной пленкой. Антигравийная защита. Виды антигравийной защиты

Авторы выражают благодарность коллективам ГУП «ИПТЭР», ООО «ИТ–Сервис», ФГУП «ЦНИИчермет», НИЦ «Термохимия материалов», ООО «Самарский ИТЦ»,
ООО «Сибнефтегаздиагностика», ФГУП «ВНИИК», ООО «ПечорНИПИнефть» и др.
за помощь в проведении исследований.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущегоПо итогам проведенного комплекса испытаний, подтвердивших высокие служебные характеристики труб из стали 05ХГБ, данная продукция была одобрена для применения в ряде отечественных нефтегазодобывающих компаний. В настоящее время проводится опытно-промышленная эксплуатация трубопроводов из стали 05ХГБ. Опытная эксплуатация сопровождается авторским надзором со стороны АО «ВМЗ», включая проведение внутритрубной диагностики. Специалистами АО «Выксунский металлургический завод» полностью разработана сквозная технология производства проката и труб из стали 05ХГБ диаметром 159 – 530 мм и толщиной стенки 5 – 12 мм, гарантирующая стабильно высокий уровень показателей качества и надежности.

Марка машины сделанная из стали. Материалы, из которых производят кузов современного автомобиля

Основным материалом для производства автомобиля является сталь. Действительно, ведь стали обладают достаточной конструкционной прочностью, небольшой ценой, а также могут использоваться в разных технологических процессах: они легко штампуются или свариваются. Но у сталей есть и недостатки. Главный из них – низкая стойкость к коррозии, что вынуждает конструкторов применять для защиты кузова специальные защитные покрытия. Кроме того, стальная деталь имеет большую массу. Поэтому в конструкции автомобилей нашли широкое применение алюминиевые сплавы, пластмассы и композитные материалы.

Это обусловлено стремлением снизить уязвимость кузовов автомобилей к коррозии, а также уменьшить общую массу автомобиля, что благоприятно влияет на экономичность и управляемость. Тем не менее листовые стали не сдают свои позиции, так как стоимость алюминиевых, а уж тем более композитных материалов гораздо выше. На крупных автомобильных заводах за сутки может перерабатываться свыше 1 000 тонн листовых сталей, которые идут на изготовление широкого ассортимента автомобильных деталей. Но давайте взглянем на другие материалы, которые могли бы заменить сталь в производстве автомобилей.

Дерево

Начать наш обзор справедливо с дерева. Этот материал стоял у истоков автомобилестроения и до массового применения стали широко использовался в автомобилях. Деревянные доски или просто фанера часто шли на применение в кузовах легковых автомобилей, и прочих утилитарных конструкциях.

Отдельно стоит сказать о роскошных автомобилях – богатые владельцы обращались к кузовным ателье, в которых творили поистине произведения искусства. Панели кузовов выполнялись из лакированного дерева ценных пород, а салон обшивался дорогим сафьяном или шелком.

Особняком здесь стоит уникальная Hispano-Suiza Н6С, построенная в 1924 году гонщиком Андре Дюбоннэ. Ее двигатель с несколькими карбюраторами рабочим объемом почти в 8 литров развивал 200 л.с., но для настоящего гоночного автомобиля был нужен легкий кузов. Дефицитных в те годы легких сплавов магния или алюминия Дюбоннэ не достал, а потому обратился в авиастроительную компанию Nieport с просьбой постройки легкого кузова.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Машина, впоследствии ставшая известной под именем Tulipwood, имела набранный из 20-миллиметровых шпангоутов каркас, на который с помощью медных заклепок крепились планки разных длины и ширины, изготовленные, вопреки имени, из древесины красного дерева махагони, в то время как древесина тюльпанного дерева очень плохо гнется и склонна к раскалыванию, что не позволяет применять ее в строительстве кузовов.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

После установки всех деталей машину покрыли несколькими слоями лака и отполировали. Вся нижняя часть рамы для улучшения обтекаемости и защиты от ударов была закрыта алюминиевым кожухом. Сзади для лучшей развесовки разместили 175-литровый бензобак.

Андре Дюбоннэ поучаствовал на своей «деревяшке» в одной гонке – Тарга Флорио, где финишировал в итоге седьмым. После гонки он оставил автомобиль для повседневных поездок, а позднее тот попал в Америку и сохранился до наших дней в одном из калифорнийских автомобильных музеев.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Во время Второй мировой войны вся сталь уходила на нужды фронта, и большинство автомобилей стало оснащаться простыми деревянными кузовами типа фаэтон или универсал. Серийное производство автомобилей с деревянными кузовами продолжалось и после войны, особенно массово это явление получило развитие в Америке. И если в Европе и СССР к 50-м годам парк автомобилей имел стальные кузова, то американские автомобилисты не могли избавиться от привычки ездить на деревянной машине. Панели кузовов кабриолетов выполняли из красного дерева и лакировали, но в 60-е годы от деревянного кузова, который имел свойство рассыхаться, был пожароопасен и попросту небезопасен, стали отказываться. А впоследствии вплоть до 80-х годов на многих американских универсалах и джипах имелась виниловая графика с отделкой «под дерево».

Такие машины особенно популярны благодаря американским фильмам 80-90-х годов, где граждане Штатов путешествовали по стране на универсалах. Сейчас ясеневые рамы используют для своих машин англичане из фирмы Morgan, да в одном из поколений , но полноценного автомобиля, выполненного целиком из дерева, современная промышленность уже не выпускает.

В 2007 году американский энтузиаст Джо Хармон представил на тюнинг-шоу в Эссене среднемоторный суперкар Splinter, к постройке которого он приступил еще будучи студентом. На постройку суперкара ушло пять лет, причем все строилось своими силами и средствами. Кузов среднемоторной «Щепки» создан из древесины вишни и бальсы, а за спиной водителя разместился семилитровый двигатель V8 от Chevrolet Corvette, развивающий свыше 700 л.с. Из металла также сделаны и коробка передач, усилители кузова, амортизаторы, рычаги задней подвески и тормоза. А вот передняя подвеска получила деревянные (!) рычаги, а металлического в колесах – только алюминиевые ступицы и обода. В результате масса двухместного автомобиля достигла 1 360 кг, а по заявлениям авторов максимальная скорость Splinter в теории может достигать 380 км/ч, однако испытания не проводились. Впрочем, для автора этого достаточно: машину он расценивает как воплощение своей детской мечты и даже не помышляет хотя бы о мелкосерийном производстве.

Бамбук

Отдельно расскажем о единственном концепт-каре, который применил в своей конструкции… бамбук. Автомобиль, получивший название Ford MA, был показан на выставке Индустриального дизайна в 2003 году. Имя было выбрано как заключение идей, заложенных в азиатской философии «пространство между» применительно к автомобилю, выражаемое в том, что Ford MA является средоточием между эмоциями, искусством и наукой. Разработанный на компьютере родстер, выдержанный в минималистичном стиле, использует в своей конструкции бамбук, алюминий и углепластик, а задние колеса приводит в движение электромотор, но создателями допускается и установка небольшого бензинового моторчика. Родстер ориентирован на молодых людей, которые хотят найти свежие интерпретации автомобилей. Кстати, в машине нет сварных швов: все элементы соединены между собой с помощью 364 титановых болтов, а это означает, что такие родстеры можно легко собирать дома как конструктор из почти 500 деталей.

В разоренной послевоенной Европе начали возникать сложности c поиском замены дефицитной стали, которой с трудом хватало на грузовики и автобусы. Поэтому широкое распространение у автомобильных производителей получили простенькие и дешевые мотоколяски наподобие BMW Isetta и Messerschmitt Kabinroller, которые имели три колеса, двухтактный мотор и крошечные размеры. Впрочем, покупатели не жаловались – машина стоила совсем немного, а уж благодаря Изетте мы вообще сейчас знаем марку BMW.

В таких условиях чехи Франтишек и Моймир Странские реализовали свою собственную идею бюджетного трехколесного автомобиля для народа. Первый прототип был создан братьями в 1943 году, получил имя Oskar (акроним от чешского «osa kara» – буквально «тележка на оси») и имел трубчатую раму, обшитую алюминиевыми листами. Спереди у машины было два колеса, соединенных с помощью рулевой рейки, а на одно заднее приходился цепной привод от мотоциклетного мотора.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

В серийное производство автомобиль был запущен в 1950 году и получил имя Velorex. Алюминиевые листы были в те годы стратегическим сырьем, и братьям пришлось срочно искать замену. Сталь не подходила: снабженный 250-кубовым двигателем от Явы Velorex 16/250 был очень ограничен в динамике, а стальной кузов сильно увеличивал массу машины, поэтому на раму натянули практичный и непромокаемый дерматин.

В разные годы 80 рабочих фабрики братьев Странских собирали до 400 автомобилей в год, а производство завершилось к 1973 году. Большинство Велорексов уходило в органы соцобеспечения, где полученные машины передавались людям с ограниченными возможностями. Переделанные в легкие грузовички, автомобили широко использовались как технологический транспорт на крупных промышленных предприятиях, а некоторое количество продавалось и в широком доступе. Благодаря своей простоте и неприхотливости машина пользовалась популярностью в сельской местности, ее охотно покупали агрономы и сельские врачи.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Velorex постоянно модернизировался, машина получала все более мощные двигатели. Например, выпускались модели с 175-, 250- и 350-кубовыми двигателями от Явы, а позднее появился динамостартер и гидропривод сцепления, облегчивший жизнь владельцев машины. Интересный факт: заднего хода как такового у Велорекса не существовало – чтобы поехать назад, нужно было остановить двигатель и запустить его так, чтобы коленчатый вал вращался в обратном направлении.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

В современном автомире кожа, как видно, не слишком часто встречается на кузовах автомобилей: сейчас кузовные панели затягивают в нее только тюнинг-ателье по заказу своих клиентов.

Ткань

Но не кожей единой пользовались автомобильные конструкторы. Например, в середине 80-х годов в Белорусской академии художественных искусств была создана примитивная мотоколяска, в основу которой легла трубчатая рама, на которую натянули… ткань.

Вообще, ткань как таковая имеет место в конструкции кузовов и по сей день: стоит вспомнить любой автомобиль-кабриолет с мягким складным матерчатым верхом. Но то только верх, а другое – весь кузов. И из нее делали не только мотоколяски, а вполне себе крупные автомобили. Чего только стоит построенный безымянным механиком фирмы Chris-Craft Motor Boats из Сан-Франциско в 1937 году американский автомобиль-кемпер Himsl Zeppelin Roadliner. В качестве основы использовали лонжеронную раму от универсала Plymouth (история умалчивает, какого именно), куда прикрепили отдельный трубчатый каркас, обтянутый авиационной тканью – перкалью. Этот материал, хоть и достаточно прочный, все-таки потребовал металлических бамперов и рам-усилителей вокруг окон.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

В салоне установили два дивана-кровати, столик и даже газовую плиту. После постройки автомобиль долгое время находился у местного врача, успешно пережил войну, и в 1968 году в окрестностях города Конкорд в штате Калифорния на машину наткнулись двое друзей-реставраторов – Арт Химсл и Эд Грин. Она была приведена в чувства и долгие годы служила друзьям передвижным офисом.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

В 1999 году Химсл и Грин провели комплексную реставрацию машины. Древний карбюраторный двигатель Плимута отправили на свалку, а его место занял более мощный V8 от современного Chevrolet Camaro, тканевую обшивку заменили на поливолокно, которое применяют при строительстве легких самолетов, перешили салон и в довершение всего установили пневмоподвеску.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Говоря о тканевых автомобилях, нельзя не вспомнить о современном концепте родстера BMW, получившем имя GINA. По словам главного дизайнера проекта Криса Бэнгла – человека, создавшего современный стиль автомобилей баварской марки, – имя GINA – это аббревиатура от «Geometry and Functions In «N» Adaptions», то есть «возможность многочисленного изменения форм кузова».

При создании автомобиля разработчики задали несколько вопросов. Почему кузова автомобилей делаются обязательно из пластика или металлов? Может ли владелец настроить все в своей машине так, как хочется именно ему? Ответом на эти вопросы стала… натянутая на каркас кузова эластичная ткань, разработанная в американском подразделении BMW. Сам каркас представляет собой множество металлических трубок, которые могут перемещаться с помощью гидравлических приводов. Так, владелец может одним нажатием клавиши открывать/закрывать фары и щель на капоте для обозрения мотора и менять форму ребер на боковинах, а в салоне – настраивать подголовники или менять комбинацию приборов.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Конечно, перспектив серийного выпуска похожих на Джину автомобилей в ближайшем будущем нет, но конструкторы считают, что у таких тканевых кузовов большое будущее. По словам все того же Бэнгла, ткань может дать разработчикам меньшее количество ограничений в дизайне, позволяет придать кузову аэродинамически правильную форму и защитить внутренние узлы кузова, а возможно, и перевернуть представления о конструкции автомобиля. Ведь легким движением руки будущий покупатель сможет изменить форму кузовных деталей на ту, что больше всего подходит его запросам.

Конопля

Вообще ткани всегда интересовали конструкторов с точки зрения выпуска композитных материалов – ведь они легче и не поддаются коррозии, а их производство дешевле. В качестве основы использовались натуральные тканевые волокна, несколько слоев которых пропитывались эпоксидной смолой.

Первым в мире автомобилем с кузовом из композитов стал Soybean Car («Соевый автомобиль»), сконструированный как эксперимент компанией Ford и представленный в августе 1941 года. Также он известен под именем «Hemp body car» («Автомобиль с кузовом из конопли»). В качестве основы для машины использовали рамное шасси и силовой агрегат от седана Ford V8, а внешние панели выполнили из пластика, в котором наполнителями стали конопляное волокно и соевые бобы. Всего панелей было 14, и все они крепились к раме с помощью болтов, это позволило удержать массу машины на уровне 850 кг, что примерно на 35 процентов меньше, чем у прототипа. V-образную карбюраторную «восьмерку» перевели на питание биоэтанолом, полученным из всё той же конопли. Работы по автомобилю закончились после вступления США во Вторую мировую, а впоследствии автомобиль был уничтожен.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Натуральные волокна в качестве наполнителя будоражили умы конструкторов машин еще долгое время. Например, известный немецкий автомобиль Trabant имел кузов из композитного материала «дуропласт». Здесь наполнителем являлись отходы советского хлопкового производства – очёсы, которые заливались все той же эпоксидной смолой. Шутники советовали владельцам «Траби» остерегаться коз, свиней и гусениц, в ожидании того, что их «хлопковый пластик» мог быть попросту съеден. Тем не менее такой материал не гнил и обеспечивал небольшую массу машинке, снабженной двухтактным моторчиком в 25 л.с.

От мягкой до сверхвысокопрочной — эволюция сталей в кузове автомобиля. Новые сорта высокопрочной стали для автомобилей будущего

Но и это не было концом. В 2000 году компания Toyota представила концептуальный автомобиль Toyota ES3 – компактный городской автомобиль с алюминиевым кузовом, внешние панели которого выполнены из специального полимера TSOP (Toyota Super Olefin Polymer). Этот материал использует в качестве сырья лен, бамбук и даже… картофель и легко поддается переработке. Широкого распространения он так и не получил – наверняка из-за нежелания владельцев иметь машины из переработанной картошки.

В протяжении всей истории, с того момента как был сотворен автомобиль, повсевременно велись поиски новых материалов. И кузов автомобиля не был исключением. Производили кузов из дерева, стали, алюминия и разных видов пластика. Но на этом поиски не останавливались. И, наверное, каждому любопытно, из какого материала делают кузова автомобилей сейчас?

Пожалуй, изготовка кузова является при разработке автомобиля одним из самых сложных процессов. Цех в заводе, где выполняются кузова, занимает площадь примерно 400 000 м кВ, цена которого млрд баксов.

Для производства кузова нужно больше сотки отдельных частей, которые потом необходимо соединить в одну конструкцию, соединяющую внутри себя все части современного автомобиля. Для легкости, прочности, безопасности и малой цены кузова конструкторам нужно всегда идти на компромиссы, находить новые технологии, новые материалы.

Разглядим недочеты и достоинства главных материалов, применяемых при изготовлении современных кузовов автомобилей.

Этот материал употребляется для производства кузовов издавна. Сталь имеет отличные характеристики, дозволяющие изготавливать детали различной формы, и при помощи разных методов сварки соединять нужные детали в целую конструкцию.

Разработан новый сорт стали (упрочняющийся во время термообработки, легированный), позволяющий упростить создание и в предстоящем получить данные характеристики кузова.

Делается кузов в несколько шагов.

С самого начала производства из железных листов, имеющих разную толщину, штампуются отдельные детали. После эти детали свариваются в большие узлы и при помощи сварки собираются в одно целое. Сварку на современных заводах ведут боты, да и ручные виды сварки также используются — полуавтоматом в среде углекислого газа либо употребляется контактная сварка.

С возникновением алюминияпотребовалось разрабатывать новые технологии для получения данных параметров, которые должны быть у железных кузовов. Разработка Tailored blanks как раз и является одной из новинок — сваренные встык по шаблону железные листы различной толщины из различных видов стали образуют заготовку для штамповки. Тем отдельные части сделанной детали владеют пластичностью и прочностью.

  • низкая цена,
  • высочайшая ремонтопригодность кузова,
  • отработанная разработка производства и утилизации кузовных деталей.
  • наибольшая масса,
  • требуется защита от коррозии,
  • потребность в большенном количестве штампов,
  • их накладность,
  • такжеограниченный срок службы.

Все идет в дело.

Все материалы, о которых говорилось выше, имеют положительные характеристики. Потому конструкторами проектируются кузова, сочетающиеся детали из различных материалов. Тем при использовании можно обходить недочеты, а использовать только положительные свойства.

Кузов Мерседес-бенз CL является примером гибридной конструкции, потому что при изготовлении применялись такие материалы — алюминий, сталь, пластик и магний. Из стали сделаны днище багажного отделения и каркас моторного отдела, и некие отдельные элементы каркаса. Из алюминия сделан ряд внешних панелей и деталей каркаса. Из магния сделаны каркасы дверей. Из пластика изготавливают крышку багажника и фронтальные крылья. Еще вероятна такая конструкция кузова, в какой каркас будет сделан из алюминия и стали, а внешние панели из пластика и/либо алюминия.

  • вес кузова понижается, при всем этом сохраняется твердость и крепкость,
  • достоинства каждого из материалов при применении употребляются очень.
  • необходимость особых технологий соединения деталей,
  • непростая утилизация кузова, потому что нужно за ранее разобрать кузов на элементы.

Дюралевые сплавы для производства авто кузовов начали использовать относительно не так давно, хотя и были использованы в первый раз в прошедшем столетии, в 30-е годы.

Употребляют алюминий при изготовлении всего кузова либо его отдельных деталей — капот, каркас, двери, крышу багажника.

Исходный шаг производства дюралевого кузова похожий с созданием железного кузова. Детали сначала штампуются из листа алюминия, позже собираются в целую конструкцию. Сварка употребляется в среде аргона, соединения на заклепках и/либо с внедрением специального клея, лазерная сварка. Также к железному каркасу, который сделан из труб различного сечения, крепятся кузовные панели.

  • возможность сделать детали хоть какой формы,
  • кузов легче железного, при всем этом крепкость равная,
  • легкость в обработке, вторичная переработка не составляет труда,
  • устойчивостьк коррозии (не считая химической), такжемалая стоимость технологических процессов.
  • низкая ремонтопригодность,
  • необходимость в дорогостоящих методах соединения деталей,
  • необходимость специального оборудования,
  • существенно дороже стали, потому что затраты энергии намного выше

Термопласты.

Это таковой тип пластического материала, который при повышении температуры перебегает в жидкое состояние и делается текучим. Этот материал используется при изготовлении бамперов,деталей обшивки салона.

  • легче железного,
  • при переработке малые издержки,
  • низкая цена подготовки и самого производства при сопоставлении с дюралевыми и железными кузовами (не нужна штамповка деталей, сварочное создание, гальваническое и окрасочное производства)
  • потребность в огромных и дорогостоящих литьевых машинах,
  • при повреждениях сложность в ремонте, в неких случаях единственным выходом является подмена детали.

Стеклопластик.

Под заглавием стеклопластик имеется в виду хоть какой волокнистый наполнитель, который пропитан полимерными термореактивными смолами. Более известными наполнителями числятся — карбон, стеклоткань, кевлар, также волокна растительного происхождения.

Карбон, стеклоткань из группы угле-пластиков, которые представляют собой сеть из переплетенных углеродных волокон (притом, переплетение происходит под различными определенными углами), которые пропитаны особыми смолами.

Кевлар — это синтетическое полиамидное волокно, отличающееся небольшим весом, устойчивое к высочайшей температуре, негорючее, по прочности на разрыв превосходит сталь в пару раз.

Разработка производства кузовных деталей заключается в последующем: в особые матрицы укладывается слоями наполнитель, который пропитывают синтетической смолой, потом оставляют для ее полимеризации на определенное время.

Есть некоторое количество методов по изготовлению кузовов: монокок (весь кузов — одна деталь), внешняя панель из пластика, установленная на дюралевом либо железном каркасе,атакже идущий без перерывов кузов с вставленными в его структуру силовыми элементами.

  • при высочайшей прочности небольшой вес,
  • поверхность деталей обладает неплохими декоративными свойствами (это позволит отрешиться от покраски),
  • простота в изготовлении деталей, имеющих сложную форму,
  • огромные размеры кузовных деталей.
  • высочайшая цена заполнителей,
  • высочайшее требование к точности форм и к чистоте,
  • время производства деталей довольно длительное,
  • при повреждениях сложность в ремонте.

04/11/2012 0:50 85

Кузов автомобиля – это сложная и металлоемкая часть транспортного средства, которая служит для размещения водителя, пассажиров и груза. От состояния данного элемента зависит не только внешний вид автомобиля , но и такие важные параметры, как обтекаемость, комфортность и безопасность.

Современный кузов автомобиля обычно делают бескаркасным. Он представляет из себя жесткую сварную конструкцию, состоящую из:

основания (пола) со специальными подрамниками для установкитрансмиссии и двигателя ;

передней и задней частей;

левой и правой боковин;

задних и передних крыльев;

К элементам окончательной отделки кузова относятся:

бамперы (защищают переднюю и заднюю часть кузова при столкновениях на малых скоростях);

наружная отделка и защитные декоративные накладки (используется для улучшения аэродинамических характеристик автомобиля);

Вам будет интересно  Недорогие и легкие способы обновить внешний вид автомобиля - На Колесах

остекление кузова;

дверные замки (играют существенную роль в обеспечении пассивной безопасности);

сиденья (обеспечивают пассивную и активную безопасность);

внутренняя отделка .

При проектировании кузова производитель учитывает целый ряд факторов: размер и тип двигателя, габариты ведущих мостов, пространство необходимое для установки колес, объем и местоположение топливного бака, аэродинамические характеристики, дорожный просвет, обзорность, комфорт и безопасность при эксплуатации, технологичность изготовления, ремонтопригодность и многое другое. Полученная в итоге конструкция должна иметь как можно большую жесткость при кручении и изгибе, низкую частоту колебаний, хорошо поглощать кинетическую энергию удара во время аварии, а также быть стойкой к воздействию постоянных напряжений, которые могут привести к возникновению трещин и разрушению сварных швов. Основным условием для удовлетворения этим требованиям является правильный выбор материалов, используемых при изготовлении кузова автомобиля .

В настоящий момент наибольшую популярность получили:

a) Тонколистовая сталь.

Из тонколистовой стали (0,6 до 3 мм) изготавливается оболочковый несущий «скелет» автомобиля. Из-за ее высокой прочности, пластичности и экономической эффективности никакие другие материалы большого распространения при производстве кузовов не получили.

Алюминий, как правило, используется при изготовлении отдельных частей кузова (капот, крышка багажника и т.п.) с целью снижения массы автомобиля. Однако иногда применяется и для изготовления несущих частей, как например, в пространственной раме ASF немецкой фирмы Audi.

c) Пластмасса.

Применение пластмассы вместо стали при изготовлении отдельных элементов кузова в последнее время становиться все более популярно. Плюсами данного материала являются очень низкая стоимость и простота изготовления, минусами – низкая прочность и невозможность ремонта (поврежденную деталь приходится менять).

Для защиты металлов от коррозии, при производстве кузова максимально снижается количество фланцевых соединений, а также острых кромок и углов, устраняются зоны возможного скопления пыли и влаги, выполняются специальные технические отверстия для антикоррозийной обработки, обеспечивается вентиляция полых элементов, выполняются дренажные отверстия.

Различают три главных типа кузовов : однообъемные (отсек для двигателя, салон и багажник объединяются в одно целое), двухобъемные (в одном отсеке расположен двигатель, в другом водитель, пассажиры и багаж) и трехобъемные (в одном отсеке расположен двигатель, во втором – водитель и пассажиры, в третьем – багажное отделение). Кроме того кузова легковых автомобилей различают по количеству дверей (двух-, трех-, четырех- пятидверные), по числу рядов сидений (с одним, двумя или тремя рядами) и конструкции крыши (с открытым или закрытым верхом).

Материалы, из которых производят кузов современного автомобиля

Подавляющее большинство кузовов современных автомобилей, изготавливаются из того же материала, который Генри Форд использовал для производства своих легендарных Model T. Однако в целях снижения веса транспортного средства автопроизводители не только используют такие известные металлы, как алюминий, магний и всевозможные их сплавы, но и вкладываются в разработки новых материалов, среди которых стекловолокно (стеклоткань ) и всевозможные варианты углепластика.

Рассмотрим некоторые основные современные материалы, на примере создания спортивного автомобиля.

В автомобилестроении самый передовой с технологической точки зрения из используемых сегодня материалов — карбон. Название этого композитного материала в переводе с латинского carbonis означает «уголь». Основу карбона составляют нити углерода, обладающие выдающимися возможностями: характеристики сопротивления растяжению-сжатию, как у стали, при этом плотность, а соответственно и масса, меньше, чем у алюминия (для сравнения при одной и той же прочности карбон на 40% легче стали и на 20% — алюминия), к тому же, карбон обладает минимальным расширением при нагреве, высокой износостойкостью и устойчивостью к химическим воздействиям. Но, естественно, карбон не может быть идеальным и его нити рассчитаны только на растяжение, в связи с чем используются как армирующий материал. Для применения в кузовах и панелях автомобилей используют сплав, а точнее модифицированное волокно — в нити карбона вплетаются нити резины. Такое карбоновое волокно еще используется для изготовления карбоново-керамических тормозных дисков и дисков сцепления, из-за того, что они гораздо устойчивее к перегреву и имеют возможность сохранять работоспособность при более высоких, чем стальные диски, температурах. Неудивительно, что изначально применять карбон придумали в «Формуле-1» в семидесятых годах (Mercedes McLaren, Porsche Carrera GT).

Второй по популярности материал в производстве суперкаров — алюминий, точнее, его сплавы. Преимущество таких сплавов в том, что они легки и, к тому же, практически не подвергаются коррозии. Алюминиевые сплавы применяются при изготовлении моторных блоков цилиндров, наружных кузовных панелей, самого несущего кузова и некоторых элементов подвески. Почему используют алюминий вместо стали? Из-за его легкости, подобные конструкции гораздо легче таких же, но из стали. Однако и у алюминия есть свой недостаток и связан он с его сваркой: дело в том, что процесс сварки необходимо производить в среде инертных газов, используя специальную присадочную проволоку. Поэтому некоторые автопроизводители (например, Lotus) пытаются искать замену сварке и склеивают алюминиевые детали специальным составом, усиливая места стыков заклепками.

В производстве спортивных машинах широкое использование получил всевозможный пластик. Особо прочный и эластичный пластик применяется для изготовления кузовных панелей, в некоторых моделях (например, Chevrolet Corvette) — всей наружной части кузова. В таком автомобиле несущая конструкция выполняется в виде каркаса, на который навешивается декоративный кузов.

Стекловолокно

Стекловолокно — это волокно или комплексная нить, которая формируется из стекла. В таком виде стекло проявляет необычные для себя свойства: не бьётся и не ломается, а вместо этого легко гнётся без повреждения. Это позволяет ткать из него стеклоткань , применяемую в автомобильной промышленности.

Благодаря тому, что ткань из стекла имеет может принять любую форму, ее используют прежде всего при создании аэродинамических обвесов. С помощью макета стеклоткани придается необходимая форма (каркас), а для его фиксации используются смолы. Таким образом получается легкий и прочный каркас обвеса спортивного автомобиля.

Автомобильная промышленность, также как и любая другая не стоит на месте и развивается в угоду потребителю, который хочет иметь быстрый и безопасный автомобиль. Это приведет к тому, что в будущем в производстве автомобилей будут использоваться более новые, отвечающие современным требованиям материалы.

На протяжении всей истории, с того момента как был создан автомобиль, постоянно велись поиски новых материалов. И кузов автомобиля не был исключением. Производили кузов из дерева, стали, алюминия и различных видов пластика. Но на этом поиски не останавливались. И, наверняка, каждому интересно, из какого материала делают кузова автомобилей сегодня?

Пожалуй, изготовление кузова является при создании автомобиля одним из самых сложных процессов. Цех в заводе, где производятся кузова, занимает площадь приблизительно 400 000 м кВ, стоимость которого миллиард долларов.

Для изготовления кузова необходимо больше сотни отдельных частей, которые затем нужно соединить в одну конструкцию, соединяющую в себе все части современного автомобиля. Для легкости, прочности, безопасности и минимальной стоимости кузова конструкторам необходимо все время идти на компромиссы, искать новые технологии, новые материалы.

Рассмотрим недостатки и преимущества основных материалов, используемых при изготовлении современных кузовов автомобилей.

Этот материал используется для изготовления кузовов давно. Сталь имеет хорошие свойства, позволяющие изготавливать детали различной формы, и с помощью различных способов сварки соединять необходимые детали в целую конструкцию.

Разработан новый сорт стали (упрочняющийся во время термической обработки, легированный), позволяющий упростить производство и в дальнейшем получить заданные свойства кузова.

Изготавливается кузов в несколько этапов.

С самого начала изготовления из стальных листов, имеющих разную толщину, штампуются отдельные детали. После эти детали свариваются в крупные узлы и с помощью сварки собираются в одно целое. Сварку на современных заводах ведут роботы, но и ручные виды сварки также применяются — полуавтоматом в среде углекислого газа или используется контактная сварка.

С появлением алюминияпотребовалось разрабатывать новые технологии для получения заданных свойств, которые должны быть у стальных кузовов. Технология Tailored blanks как раз и является одной из новинок — сваренные встык по шаблону стальные листы различной толщины из разнообразных сортов стали образуют заготовку для штамповки. Тем самым отдельные части изготовленной детали обладают пластичностью и прочностью.

  • низкая стоимость,
  • высокая ремонтопригодность кузова,
  • отработанная технология производства и утилизации кузовных деталей.
  • самая большая масса,
  • требуется защита от коррозии,
  • потребность в большом количестве штампов,
  • их дороговизна,
  • а такжеограниченный срок службы.

Все идет в дело.

Все материалы, о которых говорилось выше, имеют положительные свойства. Поэтому конструкторами проектируются кузова, сочетающиеся детали из разных материалов. Тем самым при использовании можно обходить недостатки, а использовать исключительно положительные качества.

Кузов Mercedes-Benz CL является примером гибридной конструкции, так как при изготовлении применялись такие материалы — алюминий, сталь, пластик и магний. Из стали изготовлены днище багажного отделения и каркас моторного отсека, и некоторые отдельные элементы каркаса. Из алюминия изготовлен ряд наружных панелей и деталей каркаса. Из магния изготовлены каркасы дверей. Из пластика изготавливают крышку багажника и передние крылья. Еще возможна такая конструкция кузова, в которой каркас будет изготовлен из алюминия и стали, а наружные панели из пластика и/или алюминия.

  • вес кузова снижается, при этом сохраняется жесткость и прочность,
  • преимущества каждого из материалов при применении используются максимально.
  • необходимость специальных технологий соединения деталей,
  • сложная утилизация кузова, так как необходимо предварительно разобрать кузов на элементы.

Алюминиевые сплавы для изготовления автомобильных кузовов начали использовать относительно недавно, хотя и были применены впервые в прошлом столетии, в 30-е годы.

Используют алюминий при изготовлении всего кузова или его отдельных деталей — капот, каркас, двери, крышу багажника.

Начальный этап изготовления алюминиевого кузова схожий с изготовлением стального кузова. Детали вначале штампуются из листа алюминия, потом собираются в целую конструкцию. Сварка используется в среде аргона, соединения на заклепках и/или с использованием специального клея, лазерная сварка. Также к стальному каркасу, который изготовлен из труб разного сечения, крепятся кузовные панели.

  • возможность изготовить детали любой формы,
  • кузов легче стального, при этом прочность равная,
  • легкость в обработке, вторичная переработка не составляет труда,
  • устойчивостьк коррозии (кроме электрохимической), а такженизкая цена технологических процессов.
  • низкая ремонтопригодность,
  • необходимость в дорогостоящих способах соединения деталей,
  • необходимость специального оборудования,
  • значительно дороже стали, так как энергозатраты намного выше

Термопласты.

Это такой тип пластического материала, который при повышении температуры переходит в жидкое состояние и делается текучим. Этот материал применяется при изготовлении бамперов,деталей обшивки салона.

  • легче стального,
  • при переработке минимальные затраты,
  • низкая стоимость подготовки и самого производства при сравнении с алюминиевыми и стальными кузовами (не нужна штамповка деталей, сварочное производство, гальваническое и окрасочное производства)
  • потребность в больших и дорогостоящих литьевых машинах,
  • при повреждениях сложность в ремонте, в некоторых случаях единственным выходом является замена детали.

Стеклопластик.

Под названием стеклопластик имеется в виду любой волокнистый наполнитель, который пропитан полимерными термореактивными смолами. Наиболее известными наполнителями считаются — карбон, стеклоткань, кевлар, а также волокна растительного происхождения.

Карбон, стеклоткань из группы угле-пластиков, которые представляют собой сеть из переплетенных углеродных волокон (притом, переплетение происходит под разными определенными углами), которые пропитаны специальными смолами.

Кевлар — это синтетическое полиамидное волокно, отличающееся маленьким весом, устойчивое к высокой температуре, негорючее, по прочности на разрыв превосходит сталь в несколько раз.

Технология изготовления кузовных деталей заключается в следующем: в специальные матрицы укладывается слоями наполнитель, который пропитывают синтетической смолой, затем оставляют для ее полимеризации на определенное время.

Имеется несколько способов по изготовлению кузовов: монокок (весь кузов — одна деталь), наружная панель из пластика, установленная на алюминиевом или стальном каркасе,атакже идущий без перерывов кузов с интегрированными в его структуру силовыми элементами.

  • при высокой прочности маленький вес,
  • поверхность деталей обладает хорошими декоративными качествами (это позволит отказаться от покраски),
  • простота в изготовлении деталей, имеющих сложную форму,
  • большие размеры кузовных деталей.
  • высокая стоимость наполнителей,
  • высокое требование к точности форм и к чистоте,
  • время изготовления деталей достаточно продолжительное,
  • при повреждениях сложность в ремонте.

На протяжении всей истории, с того момента как был создан автомобиль, постоянно велись поиски новых материалов. И кузов автомобиля не был исключением. Производили кузов из дерева, стали, алюминия и различных видов пластика. Но на этом поиски не останавливались. И, наверняка, каждому интересно, из какого материала делают кузова автомобилей сегодня?

Пожалуй, изготовление кузова является при создании автомобиля одним из самых сложных процессов. Цех в заводе, где производятся кузова, занимает площадь приблизительно 400 000 м кВ, стоимость которого миллиард долларов.

Для изготовления кузова необходимо больше сотни отдельных частей, которые затем нужно соединить в одну конструкцию, соединяющую в себе все части современного автомобиля. Для легкости, прочности, безопасности и минимальной стоимости кузова конструкторам необходимо все время идти на компромиссы, искать новые технологии, новые материалы.

Рассмотрим недостатки и преимущества основных материалов, используемых при изготовлении современных кузовов автомобилей.

Этот материал используется для изготовления кузовов давно. Сталь имеет хорошие свойства, позволяющие изготавливать детали различной формы, и с помощью различных способов сварки соединять необходимые детали в целую конструкцию.

Разработан новый сорт стали (упрочняющийся во время термической обработки, легированный), позволяющий упростить производство и в дальнейшем получить заданные свойства кузова.

Изготавливается кузов в несколько этапов.

С самого начала изготовления из стальных листов, имеющих разную толщину, штампуются отдельные детали. После эти детали свариваются в крупные узлы и с помощью сварки собираются в одно целое. Сварку на современных заводах ведут роботы, но и ручные виды сварки также применяются — полуавтоматом в среде углекислого газа или используется контактная сварка.

С появлением алюминия потребовалось разрабатывать новые технологии для получения заданных свойств, которые должны быть у стальных кузовов.

Технология Tailored blanks как раз и является одной из новинок сваренные встык по шаблону стальные листы различной толщины из разнообразных сортов стали образуют заготовку для штамповки. Тем самым отдельные части изготовленной детали обладают пластичностью и прочностью.

высокая ремонтопригодность кузова,

отработанная технология производства и утилизации кузовных деталей.

самая большая масса,

требуется защита от коррозии,

потребность в большом количестве штампов,

а также ограниченный срок службы.

Все идет в дело.

Все материалы, о которых говорилось выше, имеют положительные свойства. Поэтому конструкторами проектируются кузова, сочетающиеся детали из разных материалов. Тем самым при использовании можно обходить недостатки, а использовать исключительно положительные качества.

Кузов Mercedes-Benz CL является примером гибридной конструкции, так как при изготовлении применялись такие материалы алюминий, сталь, пластик и магний. Из стали изготовлены днище багажного отделения и каркас моторного отсека, и некоторые отдельные элементы каркаса. Из алюминия изготовлен ряд наружных панелей и деталей каркаса. Из магния изготовлены каркасы дверей. Из пластика изготавливают крышку багажника и передние крылья. Еще возможна такая конструкция кузова, в которой каркас будет изготовлен из алюминия и стали, а наружные панели из пластика и/или алюминия.

вес кузова снижается, при этом сохраняется жесткость и прочность,

преимущества каждого из материалов при применении используются максимально.

необходимость специальных технологий соединения деталей,

сложная утилизация кузова, так как необходимо предварительно разобрать кузов на элементы.

Алюминиевые сплавы для изготовления автомобильных кузовов начали использовать относительно недавно, хотя и были применены впервые в прошлом столетии, в 30-е годы.

Используют алюминий при изготовлении всего кузова или его отдельных деталей капот, каркас, двери, крышу багажника.

Начальный этап изготовления алюминиевого кузова схожий с изготовлением стального кузова. Детали вначале штампуются из листа алюминия, потом собираются в целую конструкцию. Сварка используется в среде аргона, соединения на заклепках и/или с использованием специального клея, лазерная сварка. Также к стальному каркасу, который изготовлен из труб разного сечения, крепятся кузовные панели.

возможность изготовить детали любой формы,

кузов легче стального, при этом прочность равная,

легкость в обработке, вторичная переработка не составляет труда,

устойчивость к коррозии (кроме электрохимической), а также низкая цена технологических процессов.

необходимость в дорогостоящих способах соединения деталей,

необходимость специального оборудования,

значительно дороже стали, так как энергозатраты намного выше

Это такой тип пластического материала, который при повышении температуры переходит в жидкое состояние и делается текучим. Этот материал применяется при изготовлении бамперов, деталей обшивки салона.

при переработке минимальные затраты,

низкая стоимость подготовки и самого производства при сравнении с алюминиевыми и стальными кузовами (не нужна штамповка деталей, сварочное производство, гальваническое и окрасочное производства)

потребность в больших и дорогостоящих литьевых машинах,

при повреждениях сложность в ремонте, в некоторых случаях единственным выходом является замена детали.

Под названием стеклопластик имеется в виду любой волокнистый наполнитель, который пропитан полимерными термореактивными смолами. Наиболее известными наполнителями считаются карбон, стеклоткань, кевлар, а также волокна растительного происхождения.

Карбон, стеклоткань из группы угле-пластиков, которые представляют собой сеть из переплетенных углеродных волокон (притом, переплетение происходит под разными определенными углами), которые пропитаны специальными смолами.

Кевлар это синтетическое полиамидное волокно, отличающееся маленьким весом, устойчивое к высокой температуре, негорючее, по прочности на разрыв превосходит сталь в несколько раз.

Технология изготовления кузовных деталей заключается в следующем: в специальные матрицы укладывается слоями наполнитель, который пропитывают синтетической смолой, затем оставляют для ее полимеризации на определенное время.

Имеется несколько способов по изготовлению кузовов: монокок (весь кузов одна деталь), наружная панель из пластика, установленная на алюминиевом или стальном каркасе, а также идущий без перерывов кузов с интегрированными в его структуру силовыми элементами.

при высокой прочности маленький вес,

поверхность деталей обладает хорошими декоративными качествами (это позволит отказаться от покраски),

простота в изготовлении деталей, имеющих сложную форму,

большие размеры кузовных деталей.

высокая стоимость наполнителей,

высокое требование к точности форм и к чистоте,

время изготовления деталей достаточно продолжительное,

при повреждениях сложность в ремонте.

Ни у кого не вызывает сомнения, что несущий кузов корпуса автомобиля является главной и самой сложной в производстве (а значит, и в цене) деталью современного транспортного средства. О нем и пойдет речь в этой статье.

Конечно, в эру телег и карет (начало истории кузовов) он спасал людей от переменчивой погоды, и служил вместилищем грузов. С зарождением автомобилестроения под внешними панелями кузова «замаскировали» аппараты и узлы. Продолжительное время кузов терпеливо работал только крышей, защищающей грузы, пассажиров, и устройства. Впервые, в полвека XX столетия стартовали мероприятия по снятию несущей функции с рамы, и переводу этой составляющей на кузов. После разработок, длившихся несколько лет, кузов стал «несущим». Другими словами, помимо личных «врождённых» функций, кузов стал исполнять роль рамы опоры для аппаратов, подвески и т.п.

В целях достижения подходящей стабильности, жесткости на кручение и изгиб, в систему кузова ввели силовые детали фрагменты рам: лонжероны и поперечины, попутно укрепили крышу с ее стойками, двери, и так далее. Родоначальником безрамных серийных машин стала отечественная «Победа», создание которой стартовало в 1945 году. Конечно, в самом начале производства несущие кузова по крепости уступали рамным системам.

На данный период обстановка поменялась в сторону первых. Во всяком случае, разница весьма несущественная. В машинах с открытым верхом, нехватку жесткости возместили усилением дна авто. В отдельных конструкциях жёсткость достигали методом соединения лонжеронов передней и задней частей, более устойчивой к ударам конструкцией.

Немного об определениях.

Геометрия кузова строго определённое системой кузова расположение подвески передней и задней части, аппаратов коробки, дверей, окошек и просветов.

Изменение (аварии, модернизация) геометрии кузова приводит к изменениям в движении, неровному износу резины и ухудшает безопасность пассажиров (повышение возможности заноса, распахивания дверей на ходу и прочее).

Зоны деформации определенные конструктивными особенностями кузова места со сниженной жесткостью, специально созданные для поглощения энергии удара. Зоны деформации предусмотрены для сбережения целостности автомобильного салона и здоровья пассажиров.

Контактная сварка метод электросварки, где к участкам свариваемых деталей подводятся электроды, и проводится ток повышенной мощности. В позиции разогрева сплав элементов плавится, образуя однородное соединение. Места сварки бывают непрерывными и точечными. Второй способ так и зовётся «точечная сварка» (соединение производится на дистанции примерно 5 см от соседней точки).

Сварка лазером соединение элементов с использованием сфокусированного лазерного луча. Температура в месте стыка просто огромна, но расстояние плавки от краёв очень незначительно. Отсюда появляется огромный плюс этого метода, практически невидимое место сварки. А значит, и нет необходимости в обработке шва сварки.

Силовой каркас сваренные в общую конструкцию дно, стойки, крыша с рамками окошек, лонжероны, балки-усилители и прочие силовые составляющие, образующие в целом «кокон», в котором располагается пассажирский автомобильный салон.

Кузов-телохранитель.

В современном скоростном мире несущий кузов корпуса автомобиля стал выполнять новую задачу второй уровень защиты пассажиров. На первом — ремни, подушки безопасности и т.д. Для этого кузов автомобиля разбили на зоны, имеющие разную степень жесткости. Переднюю и заднюю изготовили более «податливыми», успешно поглощающими мощность удара, а корпус салона более жёсткая зона, чтобы ликвидировать возникновение травмоопасных ситуаций и вдавливание агрегатов во внутрь кузова. Энергопоглощение поддерживается с помощью смятия «в гармошку» некоторых силовых конструкций, которые могут принести ущерб здоровью пассажиров.

Было принято нетрадиционное решение в пассивной защищенности и увеличении жесткости кузова конструкторами Mercedes класса А. Для того чтобы двигатель, находящийся под коротким капотом, при аварии не мог причинить ущерб пассажирам, само днище было спроектировано конструкторами двойным образовался своего рода «бутерброд» с пустотным промежутком. Разумеется, при таковой сборке, помещенный фактически в самом низу движок, в случае фронтального удара вдавливается в этот промежуток, тем самым защищая пассажиров салона от повреждений. Также, стоит отметить тот факт, что в этом промежутке свободно разместились аккумулятор, бензобак, а также прочие агрегаты и узлы автомобиля.

Из чего и как изготавливают несущие кузова.

При изготовлении кузовов применяют листовое железо, имеющее разный набор параметров. Например, в местах, где силовые нагрузки повышены, применяют 2,5 мм лист металла, а для элементов «оперения» капота, крыльев, дверей, багажника 0,8-1,0 мм.

Все детали, из которых впоследствии появится кузов, соединяют при помощи нескольких видов электросварки. Кстати, некоторые компании применяют необычные методы соединения кузовных элементов, к примеру, применяют лазерную сварку, или же клепают заклёпками в сочетании с очень прочным клеем. В гамме материалов для изготовления несущих кузовов выбор не велик.

До этого времени в серийных автомашинах применялась исключительно листовое железо и, изредка, алюминий. В 80-х для того, чтобы уберечь кузов от ржавчины, начали использовать оцинкованное железо первый период с однослойным покрытием цинком, позднее стали покрывать с обеих сторон. Как результат, гарантии от сквозной ржавчины на кузове возросли от 6 до 10 лет, где-то даже до 12!

Источник http://telzakaz.ru/the-instrument-panel/ot-myagkoi-do-sverhvysokoprochnoi-evolyuciya-stalei-v-kuzove.html
Источник http://rallystore.ru/marka-mashiny-sdelannaya-iz-stali-materialy-iz-kotoryh-proizvodyat.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *