Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарок

Содержание

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии

Катодная (электрохимическая) защита кузова автомобиля от коррозии

Коррозия автомобиля

Возникновение коррозии — одна из самых распространённых причин выхода автомобиля из строя. Под действием ржавчины поверхность кузова машины очень быстро приходит в негодность и разрушается. Поэтому защита кузова от коррозии — одна из самых важных и обязательных задач, стоящих перед каждым владельцем автомобиля. Перед тем как говорить о том, каким образом может быть организована защита кузова автомобиля от ржавчины, давайте рассмотрим, что собой представляет процесс коррозии и каковы причины его возникновения.

Ржавчина на кузове машиныКоррозия капота автомобиля

По сути, процесс коррозии — это окисление металла, которое ведёт к дальнейшему его разрушению. От появления ржавчины большую часть кузова автомобиля защищает лакокрасочное покрытие. Нарушение этого покрытия создаёт незащищённые участки на поверхности кузова автомобиля. Туда попадает влага с различными химически активными добавками. Слой грязи способствует тому, что влага задерживается в трещинках и микроповреждениях лакокрасочного слоя, что приводит к появлению ржавчины. Можно выделить следующие участки автомобиля, где повышена опасность возникновения очагов коррозии:

  • элементы, расположенные в непосредственной близости к поверхности дороги;
  • швы после неграмотно выполненной сварки после ремонта автомобиля;
  • незащищённые участки с плохой вентиляцией, где проблематично быстрое высыхание влаги.

Очень важно помнить, что своевременное удаление ржавчины — необходимый пункт автомобильного сервиса. Периодически осматривайте свою машину и в случае обнаружения очагов окисления обеспечьте их немедленное удаление. Игнорирование очагов ржавчины или несвоевременное устранение приведут к разрушению структуры металла.

Коррозия кузова машины

Катодная (электрохимическая) защита: принцип функционирования

Защита кузова автомобиля от коррозии может осуществляться разными путями. Одним из интересных вариантов решения проблемы является катодная (электрохимическая) защита, носящая название «нержавейка».

Это активный способ защиты, он препятствует возникновению причин для развития коррозии. Он использует особенности окислительно-восстановительных химических реакций. Мы при помощи отрицательного электрического заряда воздействуем на тот участок, которому требуется защита от ржавчины.

Катодная защита автомобиля от коррозииПотенциал на аноде

Принцип этого метода заключается в том, что между металлом кузова и средой вокруг машины проходит электрический ток, вызванный разницей потенциалов. При этом более активный материал окисляется, а менее активный — восстанавливается.

Поэтому пластины из негативно заряженных металлов принято называть жертвенными анодами. Однако здесь нужно соблюдать определённую осторожность: если сдвиг потенциала слишком велик, может выделяться водород, меняться структура при электродного слоя, наблюдаться «деградация» материала, а не его защита. Катодом в данной схеме выступает поверхность кузова, а положительным зарядом назначаются любые объекты из окружающей среды. Это могут быть части автомобиля, влажная поверхность дороги и т.п. Следует помнить, что для анода нужен активный материал: магний, алюминий, цинк или хром. Эффективность работы такой схемы напрямую зависит от размера анода.

Электрохимическая защита кузова автомобиля от коррозииКатодная защита кузова от коррозии — цинковый анод

Катодная защита от коррозии своими руками для авто в гараже

Для автомобиля, который неподвижно хранится в гараже, организовать своими руками электрохимический заслон очень просто. Как уже говорилось выше, в качестве катода выступает сама машина. Анодом может быть назначено само здание гаража, если он сделан из металла. Либо это может быть заземляющий контур, если гараж неметаллический, или машина стоит на стоянке. Металлический пол или открытые участки из металла снизу будут препятствовать появлению ржавчины на днище машины.

Заземляющий контур создаётся таким образом — вокруг машины забиваем в землю 4 металлических штыря. Их длина должна быть не менее 1 метра. Натягиваем вокруг этих штырей металлическую проволоку. Контур готов — в отличие от металлического здания он будет взаимодействовать только с днищем вашего авто.

Подключение контура или гаража выполняем через резистор — коммутируем его с положительным разъёмом автомобильного аккумулятора.

Катодная защита автомобиля от коррозииПодключаем контур через резистор к аккумулятору

Катодная защита от коррозии для движущегося автомобиля

Теперь давайте разберём, как своими руками защитить таким способом от коррозии движущуюся машину. Как и в описанном выше способе, авто выступает в роли катода. В качестве анода мы можем использовать заземляющийся«хвост» из резины или защитные электроды.

«Хвост» — это самый простой метод профилактики возникновения ржавчины. Это полоска резины с прикреплёнными металлизированными элементами. Он крепится на задней части транспортного средства таким образом, чтобы свисать и создавать разницу потенциалов между машиной и мокрым покрытием дороги.

С увеличением влажности автоматически возрастает эффективность защиты от окисления. На него попадают брызги из-под колёс машины, что служит на пользу для протекания электрохимического процесса. Дополнительным плюсом «хвоста» является удаление статического напряжения. Например, транспорт с огнеопасным грузом использует даже такое средство, как металлические цепи, которые волочатся по дороге — таким образом происходит удаление статического заряда, по причине которого может возникнуть искра и спровоцировать возгорание.

Катодная защита от коррозии автомобиляЗаземляющий «хвост» из резины

Использование защитных электродов годится как для движущихся машин, так и для неподвижного транспорта. Для создания эффективной системы нужно поставить на авто около 15—20 элементов. Это круглые или квадратные пластинки размером от 4 до 10 квадратных сантиметров. Для их изготовления годятся алюминий, нержавейка, магнетит, графит, платина. Алюминий и нержавейка со временем разрушаются — их нужно будет менять через каждые 4 года.

Такие элементы имеют следующие свойства:

  • действуют в радиусе до 0,35 м;
  • ставятся лишь на окрашенные участки машины;
  • крепятся при помощи эпоксидного клея или шпатлёвки;
  • перед монтажом необходима зачистка;
  • наружная сторона не покрывается никакими изолирующими материалами;
  • необходима изоляция электродов от отрицательно заряженного кузова авто

Заключение

Каждый владелец авто должен уделять должное внимание профилактике возникновения коррозии на кузове авто. Для этого следует периодически проводить осмотр и удаление очагов ржавчины, контролировать целостность лакокрасочного покрытия и пользоваться антикоррозионными мастиками для незащищённых участков.

Очень эффективным средством профилактики процессов окисления является катодная защита кузова машины. Такая схема выглядит довольно несложно и может быть реализована без особых проблем своими руками.

Чтобы такая система работала эффективно, хорошо изучите принцип действия электрохимического метода и придерживайтесь всех рекомендаций в процессе работы. Если вы будете точно следовать всем пунктам инструкции, ваше авто получит надёжный щит, который будет препятствовать возникновению ржавчины на любых участках.

катодный, анодный методы борьбы с ржавчиной

Коррозия – наиболее распространенная причина разрушения металлических поверхностей вашего автомобиля. Продукт коррозионного процесса – это ржавчина – оксид железа. Коррозия металла не останавливается ни на секунду – она начинается в момент рождения автомобиля и распространяется по кузову, днищу, что неизменно приведет в негодность автомобиль, если ничего с этим не делать. Электрохимическая защита автомобиля от коррозии – один из лучших вариантов уберечь свою машину от ржавения.электрохимическая защита машины

Причины коррозии

Зачастую виновниками появления коррозии выступают вода и дорожные реагенты, используемые дорожными службами в холодный период. Таким образом, железо в сочетании с соленым раствором, который создается в результате, подвергается разрушительному влиянию коррозии. Осевшая грязь выполняет роль губки, притягивая молекулы воды из воздуха. Колебания температуры, вибрация, состояние лакокрасочного покрытия – все это влияет на скорость коррозии.

Как защитить автомобиль

Есть три эффективных способа электрохимической защиты от коррозии:

  1. Пассивные методы борьбы. Принцип базируется на изоляции автомобиля от губительного воздействия агрессивной среды.
  2. Метод активной защиты. Это комплекс работ по защите металлических поверхностей автомобиля.
  3. Преобразующий метод. Направлен на борьбу с уже возникшей ржавчиной: удаление, выжигание, модификация ржавчины.

Наиболее действенный способ – активный, а самой перспективной считают электрохимическую защиту кузова от коррозии. Методов защиты от электрохимической коррозии есть два:

  • катодный метод;
  • анодный метод.

катодная зашита кузова автомобиля

Катодная электрохимическая защита

Самым популярным методом является катодная защита – это метод подразумевает сдвиг потенциала корпуса в отрицательную сторону.

Принцип катодной защиты заключается в прохождении тока, вызванного разницей потенциалов между металлом кузовных деталей машины и средой вокруг нее. Более активный материал при этом окисляется, менее активный — восстанавливается.

Электрозащита выполняется с помощью прибора, подключенного к источнику постоянного тока, – этот тип принято называть электронной защитой.

Для этого нужен электронный модуль, который можно приобрести либо изготовить самостоятельно. Он монтируется в салоне автомобиля и подсоединяется к бортовой сети.

Защитный прибор временами следует отключать, так как слишком сильное смещение потенциала может спровоцировать растрескивание металла – этот нюанс можно назвать единственным недостатком катодной защиты от коррозии.

Гаражное хранение – отличный способ защиты

Обезопасить автомашины от ржавения, которые находятся в неподвижном состоянии, можно в гараже, поскольку он предохраняет автомобиль от негативного воздействия. Достаточно подключить кузов к одной из металлических стен. Использование металлического гаража в качестве анода – самый простой и доступный метод электрохимической защиты. Если гаража нет, можно также использовать контур заземления на открытой стоянке.

Если в гараже пол выполнен из металла или есть открытые участки с железной арматурой, то днище машины тоже будет защищено. Летом металлические гаражи создают парниковый эффект, но если выполнить электрохимическую защиту, то он не будет разрушать металлические поверхности, а, наоборот, будет защищать кузов от коррозии.

Есть смысл обеспечить оградить свою технику от коррозии, чтобы не подвергать ее действиям ржавчины и в будущем не плакать над изможденным кузовом.

хранение авто в гараже

Для эффективной работы любой из систем, изучите принцип действия электрохимической защиты, придерживайтесь рекомендаций, следуйте инструкциям и тогда ваш автомобиль получит хороший щит, который обеспечит внешний вид машине и отличное настроение ее владельцу.

Катодная защита от коррозии для движущегося автомобиля

Как своими руками защитить движущуюся машину? Автомобиль в этом случае выступает в качестве катода, а в роли анода водители используют заземление, как защиту автомобиля – резиновый «хвост» или защитные электроды.

«Хвост» — простейший метод профилактики коррозии. С виду это резиновая полоска с вставленными металлизированными элементами. Как правило, ее крепят к задней части машины таким образом, чтобы она свисала и создавала разницу потенциалов между кузовом автомобиля и покрытием дороги.

Огромный плюс «хвоста» — контроль над статическим напряжением. К примеру, на транспортных средствах, перевозящих огнеопасные грузы, применяют в качестве анодов-«хвостов» металлические цепи, которые контактируют с дорогой – так удаляется статика, по причине которой может возникнуть возгорание.

катодная защита

Применение анодной методики

Принцип анодной защиты от коррозии – это принцип некой жертвенности. Пластины, выполненные из цинка, алюминия или меди, устанавливаются в местах, где коррозионные процессы наиболее активны, и перетягивают губительный процесс окисления на себя – в данном случае корпус автомобиля является анодом. Протекторы зачастую устанавливают в зоне крепления брызговиков, на внутренних поверхностях порожков и т.п.

alyuminievyj-anod

Защитить кузов автомобиля от коррозии можно своими руками, изготовив подобные защитные протекторы. Металл, из которого выполнены защитные электроды, может быть разным. Существует два варианта:

Разрушающиеся протекторы. Такие электроды недолговечны – их нужно менять раз в четыре года. Это алюминиевые протекторы, магниевые протекторы, нержавейка, цинковые протекторы.
Неразрушающиеся. Служат намного дольше, однако, и стоимость их гораздо выше. Платина, графит, магнетит – все эти металлы используют в качестве протекторов.
Необходимо знать правила инсталляции таких анодов:

  • форма протектора прямоугольная или круглая. Площадь колеблется от 4 до 10 кв. см.;
  • один элемент способен обезопасить до 35 см площади автомобиля;
  • устанавливать электрод можно на лакокрасочное покрытие при помощи эпоксидного клея, но в некоторых случаях пластины нужно присверливать к корпусу – это уже определенный недостаток, которым располагает протекторная защита автомобиля;
  • пластину следует устанавливать навстречу брызгам.

Оцинковка кузова

Оцинковку кузова выполняет завод-изготовитель. Как правило, кузовные элементы будущей машины погружаются в емкость с расплавленным цинком. Толщина металла, который осядет на поверхности, не больше 2 мкм. Здесь действует принцип, основанный на электрохимических процессах, а именно цинк отбирает окислительные процессы на себя.

цинковый раствор для защиты

Вообще, оцинковка может выполняться тремя способами:

  1. Термический, о котором говорилось выше.
  2. Гальванический способ. Деталь погружают в электролит и цинк налипает на деталь.
  3. Холодный способ. Деталь окрашивают цинкосодержащим составом.

Цинковое покрытие имеет один недостаток – все дело в микропорах, которые есть в цинке.

Буквально через год оцинковка перестает работать должным образом. Большую эффективность предоставляет современный метод катафорез, который предусматривает нанесение 7-9 мкм. цинка. Таким образом срок эксплуатации покрытия возрастает до 10 лет.

Защита машины – процесс обязательный и автовладелец должен это понимать. Все перечисленные способы хороши и действенны, но катодный способ все же намного лучше остальных.

Аэстимо – оценочная компанияЗащита автомобиля от коррозии навсегда

Защита автомобиля от коррозии навсегда

Автомобиль, проехавший по дороге, посыпанной реагентом, становится жертвой коррозии. И чем больше автомобиль будет забрызган грязью с дорожного полотна, тем активнее будет коррозия кузова. Реагент, находящийся на поверхности кузова, даже в сухом гараже притягивает к себе молекулы воды из воздуха, как любая соль. И чем выше влажность воздуха, тем активнее пагубное воздействие реагента. Соль делает своё коварное дело в любых условиях, разница лишь в скорости коррозии металла. Хорошо, если металл окрашен, а если имеется хотя бы небольшая царапина, то ржавчина сразу туда проникает. И не везде помогут антикоррозийные покрытия, или мастики. Ведь мелкую царапину изначально трудно заметить, а когда она превратится в сквозную коррозию, будет уже поздно. Да и необходимо постоянно следить за кузовом, чтобы своевременно закрасить краской, или замазать антикорозийкой появившийся скол краски от удара камня.
Думаю Вы замечали, отечественные автомобили ржавеют очень быстро, европейские немного медленнее, а японские автомобили – наиболее стойкие к коррозии. Для уменьшения коррозии, ещё на этапе производства автомобиля применяют различные способы защиты кузова. Например, японцы, живущие на островах, в условиях влажного морского климата применяют специальную обработку кузова автомобиля высокими частотами. Один из способов защиты от коррозии – оцинковка поверхности металла. Замечено, что после ремонта автомобиля, сварные швы наиболее подвержены коррозии. Ускорение коррозии происходит из-за высокотемпературного “ослабления” металла.
Наиболее простым и действенным способом защиты кузова автомобиля от коррозии является – катодная защита. Это вид активной – электрохимической защиты.
Изучая эту тему в Интернете, я столкнулся с тем, что она описывается не совсем “специалистами”. Статьи либо пишутся автолюбителями, мало соображающими в электронике, либо электронщиками, мало понимающими в электрохимических процессах и плохо представляющими принцип катодной защиты на автомобилях. Поэтому, в основном у них получается экспериментальный, не оптимальный и малоэффективный вариант устройств защиты. В этой статье, мы рассмотрим принцип и способы реализации катодной защиты от коррозии и разработаем оптимальный её вариант.
Принцип действия катодной защиты состоит в следующем:
В качестве катода (минуса) используется корпус автомобиля, а в качестве анода (плюса) – металлические сооружения, различные пластины и другие окружающие поверхности, проводящие ток, в том числе и влажное дорожное покрытие. Из-за разности потенциалов между защищаемой поверхностью металла и поверхностью “анода” по цепи, образующейся через влажный воздух, проходит слабый ток. На аноде происходит реакция окисления — освобождение электронов. Анод, постепенно окисляясь, разрушается, а разрушение катода наоборот прекращается.
В некоторых статьях Интернета по теме катодной защиты приводится разность потенциалов между катодом и анодом: Для железа и его сплавов полная защита от коррозии достигается при потенциале 0,1…0,2 В. Дальнейший сдвиг потенциала в сторону увеличения мало влияет на степень защиты. Плотность защитного тока должна быть в пределах 10…30 мА/м2.
На самом деле эти цифры кем-то “надуманы” для тех, кто не знает, что такое электрический ток. Но мы то с Вами знаем. Анод и катод можно расположить на расстоянии одного сантиметра друг от друга, а можно и на расстоянии нескольких сантиметров и даже метров. По законам электрохимии, для эффективности, чем дальше электроды находятся друг от друга, тем больше должна быть разница потенциалов. Поэтому говорить о конкретном значении в 0,1…0,2 вольта – неправильно. Кроме того, воздух, который используется в качестве электролита, проводит электрический ток только с большой разницей потенциалов – порядка киловольт, а маленькое напряжение ему “как слону дробина”. Поэтому, по закону Ома, о наличии защитного тока, как и о его плотности в пределах 10…30 мА/м2 говорить также нелепо. Этого тока просто не будет!
Другое дело, если мы будем рассуждать не об электрическом токе, а о разности зарядов (или потенциалов). Тогда можно будет говорить о концентрационной поляризации по кислороду, при котором молекулы воды, попадая на поверхность металла, ориентируются на поверхностях электродов так, что на аноде происходит освобождение электронов — реакция окисления, а на катоде наоборот, окисление прекращается. Так как электрический ток отсутствует, то освобождение электронов происходит очень медленно. Этот процесс безопасен и не заметен для глаз. Учитывая эффект поляризации молекул воды, наблюдается дополнительное смещение потенциала кузова автомобиля в отрицательную сторону, что позволяет периодически выключать устройство защиты от коррозии (при ремонте автомобиля, зарядке аккумулятора и т.п.). Особо необходимо отметить важный момент, чем больше площадь анода (анодов), тем эффективнее защита.
В качестве защищаемого катода, как было описано ранее, используется корпус автомобиля. Нам необходимо выбрать, что мы будем использовать в качестве анода.
Ещё раз повторюсь, для работы схемы защиты нам не требуется ток, протекающий между электродами. Если он будет, то это будет “побочный” ток, который может возникнуть в результате намокания анодов, колёс автомобиля и т.д. Это ток разряжающий аккумулятор и не более того. Поэтому автомобильную бортовую сеть + 12 вольт достаточно подключить к аноду (нескольким анодам) через добавочный резистор. Основное назначение резистора – ограничение тока разряда аккумуляторной батареи в случае замыкания анода на катод, которое может произойти по причинам “неудачной установки”, повреждения анода, его химического разложения в результате окисления и т.д.
Варианты анодов, применяемых на автомобиле, находящемся на стоянке (гараже): металлическое сооружение, находящееся в непосредственной близости от автомобиля, например металлический гараж, в котором хранится автомобиль; контур заземления, используемый при отсутствии металлического гаража, в том числе на открытой стоянке. Другие варианты анодов, применяемых на движущемся, или находящемся на стоянке (гараже) автомобиле: металлизированный резиновый заземляющий “хвост”; защитные электроды (протекторы) на кузове автомобиля.
Рассмотрим все перечисленные варианты
1. Использование металлического гаража в качестве анода является наиболее простым способом защиты главным образом внешних металлических поверхностей облицовки автомобиля. Если пол в гараже также железный, или содержит открытые участки металлической арматуры, то тогда защищается и поверхность днища автомобиля. Летом, как правило, в металлическом гараже – парниковый эффект, который при катодной защите не разрушает, а наоборот сохраняет и очищает кузов автомобиля от коррозии. Для создания такой защиты достаточно корпус гаража подключить к плюсу аккумуляторной батареи, установленной в автомобиле через обыкновенный добавочный резистор и монтажный провод. В качестве плюса, можно использовать прикуриватель, при условии, что в нём есть напряжение в режиме стоянки при отключенном замке зажигания (не у всех автомобилей при отключенном зажигании работает прикуриватель).
2. Использование контура заземления в качестве анода подобно использованию металлического гаража. Разница состоит лишь в том, что главным образом от коррозии защищается днище автомобиля. Для создания лучшего контура заземления, по периметру автомобиля необходимо забить в грунт четыре металлических кола (стержня) длиной не менее одного метра. Колы, электрически соединяются друг с другом с помощью проволоки. Контур подключается к автомобилю точно так же, как и корпус гаража – через добавочный резистор.
3. Металлизированный резиновый заземляющий “хвост” — простой и эффективный способ защиты движущегося автомобиля. В условиях влажного воздуха – дождя, мокрого дорожного покрытия, создается разность потенциалов между кузовом автомобиля и дорожным покрытием. Влажный воздух и мокрое дорожное полотно усиливает коррозию кузова автомобиля, но в данном случае наблюдается обратное — чем больше влажность, тем эффективнее антикоррозийная работа заземляющего хвоста. Хвост устанавливается сзади автомобиля так, чтобы в сырую погоду, при движении автомобиля, на хвост летели брызги воды от заднего колеса. Это улучшает эффективность антикоррозийной защиты.
Вторая функция заземляющего хвоста – он выполняет функцию антистатического приспособления. Я думаю, вы замечали, на бензовозах всегда волочится и гремит металлическая цепь, предназначенная для исключения накопления статического заряда на корпусе автомобиля и как следствие – исключения возникновения электрической искры, опасной для перевозимого груза. В некоторых статьях Интернета пишут, что цепь, волочащаяся за бензовозом – это антикоррозийное приспособление. К таким наблюдениям можно отнестись только с улыбкой.
Хвост должен быть изолирован от корпуса автомобиля по постоянному току и наоборот “закорочен” на корпус по переменному току. Достигается это RC-цепочкой, представляющей собой элементарный частотный фильтр.
4. Использование в качестве анодов защитных электродов — протекторов, практически отдельная тема. Элементарные металлические пластинки — “защитные протекторы” прикрепляются в наиболее уязвимых для коррозии местах — под крыльями, на днище кузова, на порогах. Они отвлекают на себя ржавчину за счёт того же эффекта, что и все предыдущие варианты анодов. Достоинство такого способа – постоянное наличие анода, стоит машина или едет. Такая локальная защита, говорят, дает хорошие результаты. Правда, анодов надо установить штук 15-20. Это трудоемко, но думаю “овчинка выделки стоит”.
В качестве защитных электродов (анодов) могут использоваться как разрушающиеся материалы (нержавеющая сталь, алюминий), требующие замены через 4…5 лет, так и неразрушающиеся. В качестве неразрушающихся электродов можно применять карбоксил, магнетит, графит или платину. Защитные электроды выполняются в виде прямоугольных либо круглых пластин площадью 4…10 см2.
При установке и монтаже электродов следует помнить, что:
— один защитный электрод защищает площадь с радиусом около 0,25…0,35 м;
— защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием;
— для крепления электродов рекомендуется использовать только эпоксидный клей или шпатлевку на его основе, предварительно зачистив глянец (эпоксидный клей на глянец не прилипает), но думаю, что это не догма;
— наружную сторону защитных электродов (где нет пайки) нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.
Пластины-протекторы — это положительные пластины конденсатора, которые должны быть изолированы от отрицательной пластины — кузова автомобиля. Но расстояние между пластинами должно быть небольшим, чтобы ёмкость этого конденсатора была достаточной — на большом расстоянии между пластинами электрическое поле будет стремиться к нулю. Лакокрасочное покрытие автомобиля и эпоксидный клей, находящиеся в промежутке между кузовом и пластинами — это диэлектрическая прокладка конденсатора.
Установка электродов в этих точках наиболее эффективна:
1 — коробчатые усилители брызговиков; 2 — места крепления фар и подфарников; 3 — нижняя часть передней панели; 4 — полости за щитками-усилителями передних крыльев; 5 — внутренние поверхности дверей и порогов; 6, 7 — передняя нижняя часть заднего крыла и арка колеса по стыку с крылом; 8 — фартук задней панели.
Провода к протекторным пластинам подключаются через проколы в резиновых заглушках, закрывающих отверстия в днище автомобиля, которые предусмотрены его конструкцией.
Другой вариант использования меньшего количества электродов, но с большей площадью самих пластин:
Выглядит вполне логично, зачем устанавливать много электродов малой площади, если можно установить мало электродов, но большего размера. Главное, установить их в местах наиболее подверженных коррозии, или вблизи этих мест. Кроме того, в связи с тем, что в качестве “электролита” выступает влажный воздух, пластины должны располагаться обращёнными не внутрь (внутри короба, куда не проникает влага), а наружу – навстречу агрессивной среде, например брызгам от колеса.
Кузов автомобиля током бить не может, так как токи антикоррозийной защиты очень слабые. Даже если вы положите голую пластину под обнажённое “седалище”, вы почувствуете только твёрдый металл этой пластины, не более. В антикоррозийной защите используется слабый постоянный ток, который создает слабое электрическое поле, а по альтернативной теории электрического тока — магнитное поле, только в промежутках между кузовом и местом установки протекторов. Поэтому электромагнитное поле обыкновенного сотового телефона более, чем в 100 раз сильнее, поля создаваемого катодной защитой.
Думаю, что элементарных теоретических понятий достаточно, поэтому перейдём к разработке устройства антикоррозийной защиты.
Учитывая особенности и специфику использования различных вариантов анодов, конечно лучшим вариантом является одновременное использование всех перечисленных ранее способов.
Схема устройства простейшая. Самое сложное – изготовление “заземляющего хвоста” и установка “протекторных пластин”.
Изучая вопрос протекторной защиты в Интернете, я не встретил ни одной схемы, которая оптимально выполняет задачу защиты от ржавчины. Вернёмся к тому, что в некоторых статьях пишут, что полная защита от коррозии достигается при потенциале 0,1…0,2 В. Дальнейший сдвиг потенциала в сторону увеличения мало влияет на степень защиты. Мы не будем оспаривать этого предлагаемого значения. Защитного тока фактически не существует, он возникает только в случае “появления” проводника, образующегося за счёт проводимости воды, попадающей на пластины протекторов, или на покрышки колёс. Исходя из этого, можно сделать вывод: Если мы будем стремиться к значению 0,1…0,2 вольта, тогда придется ставить делитель напряжения, а это — лишний – паразитный разряд аккумулятора впустую. Если увеличение потенциала, не ухудшает степень защиты, тогда проще подать на аноды все 12 вольт, которые будут сами по себе “падать” в зависимости от влажности пластин. Достигается это обыкновенным добавочным резистором. Необходимо рассчитать его на такой ток, при котором в случае замыкания протекторных пластин на корпус автомобиля, происходит “безопасный” разряд аккумуляторной батареи. Абсолютно все, встречающиеся в Интернете схемы катодной защиты либо имеют фиксировано малую разницу потенциалов между анодом и катодом (до 1,8 вольта), либо имеют большую разницу потенциалов (до 8…11 вольт), но авторы этих схем описывают их, как “выдающие” 0,1…0,2 вольта. Разница этих схем – в максимальном токе, определяемом добавочным резистором. Непонятно, они или сами не умеют рассчитать простейший делитель напряжения, или пытаются обмануть Вас?
Из руководства по эксплуатации автомобиля, автомобилисты знают, что устойчивый пуск двигателя с помощью стартера возможен, если емкость аккумулятора составляет не менее 60% номинальной. Если использовать одно из устройств, публикуемых авторами разных статей с током потребления 5 мА, то время, в течение которого аккумулятор можно не подзаряжать составит 40 дней. С учетом саморазряда аккумулятора это время будет еще меньше. При постоянном использовании автомобиля это не опасно, но если Вы собрались в отпуск, или длительную командировку, то такое устройство следует отключить от аккумулятора автомобиля.
Приведу популярную схему катодной защиты, даже с рисунками протекторов:
На рисунке, вывод “Вых.” подсоединяется на пластины-протекторы. Против таких протекторов я ничего не имею, поскольку их геометрия мало влияет на степень защиты (можете вырезать хоть звездочку), а влияет лишь площадь пластин.
Определим, какое же напряжение подается на пластины, и какой ток потребляет устройство?
На кристалле светодиода HL1 типа АЛ307БМ падение постоянного прямого напряжения равно 2 В (из справочника).
Остальные 10 В падают на резисторах.
Общее сопротивление R1+R2+R3 будет равно 4855 Ом (R1+R2 в параллель и R3 последовательно).
Ток делителя будет равен Iдел = U / Rобщ. = 10/4855 = 2,1 mA.
Отсюда: Напряжение на выходе Uвых = Iдел * R3 + UHL1 = 2,26 * 4300 + 1 = 10,8 B.
Где же заявляемые 0,1…0,2 вольта? Мало того, в этой схеме, проходящий через светодиод ток 2,1 mA его толком и не зажжёт, у светодиода номинальный ток 10 mA.
Кроме того, на лицо “паразитный” ток разряда аккумуляторной батареи – через делитель. Вывод: схема придумана малограмотным экспериментатором.
Подобная схема с “паразитным” разрядом аккумуляторной батареи приводится в схеме с заземляющим хвостом:

Вам будет интересно  Гальваническая оцинковка кузова автомобиля своими руками

Защита автомобиля от коррозии навсегда

В соответствии с описанием этой схемы, на кузов автомобиля, относительно земли, подаётся отрицательный потенциал, напряжением около 1,9 вольт. При наличии в воздухе даже небольшой влажности поверхность колёс (за счёт наличия солей) становится электропроводящей и электрическая цепь замыкается.
В схеме существует важный недочёт — цепь уже и так замкнута по пути: “+” аккумуляторной батареи, резистор R1, стабистор V1, “-” аккумуляторной батареи.
Паразитный ток разряда аккумуляторной батареи, протекающий через стабистор приблизительно составляет: I = UR1 / R1 = 10,1 / 240 = 42 mA, это довольно много. Защитный ток, использующий влажность воздуха такой схемы будет на порядок меньше “паразитного”. Получается, что эта схема ещё хуже предыдущей.
Встречались и другие статьи, в которых по плотности тока на протекторах вычислялись значения резисторов делителей напряжения – что является заблуждением.
________________________________________
Закончим критику, и приступим к делу. Как я и писал ранее, нет смысла стремиться к уменьшению разности напряжений между анодом и катодом. Все предлагаемые схемы катодной защиты, построенные на делителях напряжения способны принести не только пользу, но и вред. Особенно активно вы будете лить слёзы в случае осыпания пластин аккумуляторной батареи, когда произойдёт случайное замыкание протектора на корпус, а Вы этого не заметите. Если напряжение катодной защиты будет больше, то хуже от этого не будет, а даже наоборот – лучше. В то же время, ток ограниченный добавочным резистором делает такое напряжение безопасным.
Предлагаю оптимальное устройство катодной защиты, использующее все варианты анодов, которое фактически не разряжает аккумулятор, что особенно важно при длительном хранении автомобиля. Время использования может составлять до бесконечности, пока сам аккумулятор не умрёт своей смертью, даже если регулярно четвероногий друг будет мочиться на протекторы.
За шаблон, на котором мы изобразим схему, мы возьмём предыдущее схематичное изображение автомобиля, доработав его простой, но “толковой” схемой защиты.
Устройство позволяет поддерживать значение потенциала влажных участков поверхности кузова на уровне, необходимом для полной остановки и прекращения коррозийных процессов за счет разрушения защитных электродов, в качестве которых выступают стенки металлического гаража, защитные протекторы. Кроме того, во время осадков в качестве защитного анода используется и мокрая поверхность дорожного полотна.

Защита автомобиля от коррозии навсегда

В схеме имеется три цепи защиты:
Первая цепь катодной защиты – цепь “стационарной” защиты с использованием контура заземления, или корпуса металлического гаража (ракушки). Является самым эффективным способом защиты автомобиля от коррозии в условиях “парника” металлического гаража. Применяется с дополнительным проводом, подключаемым одним концом в гнездо Гн1, другим соединяется с соответствующим анодом. Гнездо Гн1 можно расположить в любом удобном для Вас месте автомобиля. Удобнее всего – в салоне, у водительского места. В состав первой “стационарной” цепи защиты входят светодиод VD1, резистор R1, гнездо Гн1 и многожильный монтажный изолированный провод. Если у Вас нет условий для использования этого вида защиты, не переживайте, значит у Вас и нет металлического гаража, а так же есть остальные цепи защиты.
Вторая цепь катодной защиты – цепь “мобильной” защиты с использованием заземляющего «хвоста». Это наиболее эффективная защита от коррозии во время дождя, тумана, мокрого дорожного полотна. Электрод-хвост располагается сзади автомобиля, на одной линии с колесом, для того, чтобы брызги воды от колеса попадали на хвост. В состав второй “мобильной” цепи защиты входят светодиод VD2, резистор R2, изолятор (на рисунке — коричневый), заземляющий электрод — хвост Э1. Дополнительно в состав второй цепи входят элементы R3 и С1, которые совместно с Э1 выполняют функцию защиты кузова автомобиля от статического напряжения. Обратите внимание, что хвост прицепляется не непосредственно к металлическому кузову автомобиля, а через изоляционный материал. В качестве хвоста используйте тонкую металлизированную резиновую ленту. Как вариант, можно использовать тонкостенный резиновый шланг с продетым в него тонким металлическим тросиком, выглядывающим на конце.
Третья цепь катодной защиты – цепь “постоянной” защиты от коррозии с использованием протекторных пластин. Эта защита от коррозии действует постоянно, как на стоянке, так и в движении, как во время дождя, так и в сухую погоду. Её эффективность зависит от количества, размеров и мест расположения пластин-электродов. Чем суммарная площадь электродов больше, тем лучше. Но учтите, что электроды должны быть распределены по кузову автомобиля в наиболее уязвимых для коррозии местах. О самих протекторах было написано выше. Наиболее приемлемый не дорогой материал для протекторов – нержавеющая сталь. В состав третьей “постоянной” цепи защиты входят светодиод VD3, резистор R4 и протекторы (на рисунке — синие). Пластины крепят на клей, но думаю, что конструкция на болтах будет работать не хуже и при умелом соединении, безусловно, будет надёжнее.
Номиналы резисторов R1, R2, R4 схемы защиты выбраны такими, чтобы в случае замыкания протекторов, хвоста, или гаражной конструкции на кузов автомобиля максимальный ток был ограничен номинальным значением тока светодиодов – 10mA. Другими словами, в условиях сухого воздуха (сухого кузова автомобиля) светодиоды не должны гореть. Если в сырую погоду, светодиоды загораются, то это свидетельствует о работе катодной защиты. Чем больше влажности, тем ярче будут гореть светодиоды. Если один из светодиодов горит максимально ярко на “сухом” автомобиле, то это означает, что имеет место неисправность – замыкание элементов защиты от коррозии на корпус автомобиля. Тогда необходимо, не позднее чем в течение недели после загорания светодиода определить место замыкания и устранить его. Основное назначение светодиодов – контроль исправности цепей катодной защиты. В условиях минимального воздействия влаги они не должны ярко светиться. Слабое свечение допускается.
Проверку исправности цепей защиты на обрыв проводят приблизительно 1 раз в месяц путем замыкания на корпус автомобиля: первую цепь проверяют замыканием провода, который должен крепиться к стенке металлического гаража; вторую – замыканием заземляющего хвоста; третью – замыканием одного из протекторов. При замыкании, соответствующий светодиод должен загореться. Для удобства, можно использовать дополнительный монтажный провод. Неплохо, при проверке исправности схемы катодной защиты ещё и осмотреть защитные протекторы.
Само нехитрое устройство можно разместить в любом удобном для Вас месте. Нет необходимости размещать его на панели приборов, перед глазами водителя. Там оно будет только отвлекать. Устройство защиты, размещённое в моторном отсеке, не позволит своевременно отреагировать на замыкание анодов на корпус автомобиля, потому как многие не заглядывают под капот своего коня от одной, до другой смены масла в двигателе. Поэтому, по моему мнению, оптимальное место расположения устройства – под приборной панелью, в нише, на 10-20 сантиметров выше педалей управления. Перед выходом из машины, водитель обычно опускает глаза для изъятия ключа из замка зажигания, поэтому светодиоды устройства защиты окажутся в поле его зрения. А красный горящий светодиод обязательно привлечёт внимание.
Необходимо, чтобы устройство оставалось подключенным к аккумулятору даже при отключенном общем электрооборудовании автомобиля (выключенном зажигании). В простейшем случае устройство можно расположить на небольшой изоляционной пластине (гетинакс, текстолит, пластмасса). Лучший вариант, если устройство поместить в какую-либо изолированную коробочку, или залить эпоксидной смолой.

Вам будет интересно  Как отполировать кузов автомобиля своими руками? ремонт авто своими руками

Электрохимическая защита автомобиля от коррозии: катодный, анодный методы борьбы с ржавчиной

Коррозия – наиболее распространенная причина разрушения металлических поверхностей вашего автомобиля. Продукт коррозионного процесса – это ржавчина – оксид железа. Коррозия металла не останавливается ни на секунду – она начинается в момент рождения автомобиля и распространяется по кузову, днищу, что неизменно приведет в негодность автомобиль, если ничего с этим не делать. Электрохимическая защита автомобиля от коррозии – один из лучших вариантов уберечь свою машину от ржавения. /> />

Как защитить автомобиль

Есть три эффективных способа электрохимической защиты от коррозии:

  1. Пассивные методы борьбы. Принцип базируется на изоляции автомобиля от губительного воздействия агрессивной среды.
  2. Метод активной защиты. Это комплекс работ по защите металлических поверхностей автомобиля.
  3. Преобразующий метод. Направлен на борьбу с уже возникшей ржавчиной: удаление, выжигание, модификация ржавчины.

Наиболее действенный способ – активный, а самой перспективной считают электрохимическую защиту кузова от коррозии. Методов защиты от электрохимической коррозии есть два:

Катодная электрохимическая защита от коррозии. Защита кузовов автомобилей от коррозии. Когда следует использовать протекторную защиту

Защитить кузов своего авто от коррозии или по крайней мере уменьшить ее интенсивность – желание каждого автовладельца. И мы в этом плане не исключение. Несмотря на то, что наши кузова пластиковые и не подвержены коррозии, много скрытых металлических элементов кузова все же ржавеют не смотря на цинковое покрытие. И чем старше становятся наши автомобили, тем меньше остается цинка и тем больше это явление проявляется. Особенно коррозии подвержены скрытые полости лонжеронов, колесные арки, подрамник и днище автомобиля. Способов защиты от ржавчины не так уж и много – это механические, химические и электрохимические. В простейшем случае: увидел ржавчину – зачисти, загрунтуй и покрась. Однако такой способ хоть и дает результат, но не является удобным и эффективным. Обрабатывать все подряд преобразователями ржавчины (как правило на основе ортофосфорной кислоты) – тоже не выход, так как все равно нужно очищать ржавые поверхности хотя бы от рыхлой ржавчины, а затем наносить преобразователь и следом защитное покрытие. А как обработать скрытые полости лонжеронов, узкие щели? Есть еще один способ – электрохимический или катодная защита. Он основан на всем известных со школьного курса принципах и уже давно применяется в судостроении, при прокладке трубопроводов да и в других отраслях.

В Польше они широко игнорируются, что является причиной плохого технического состояния наших экранов. Наиболее подходящим экраном в нашей стране должна быть полностью сборная железобетонная конструкция, преимущества которой указаны в статье. Типичный и альтернативный дизайн железобетонного экрана должен быть изготовлен для различных регионов Польши. Лучше всего, никаких спорных — земляные работы, валы, покрытые растительностью или железобетонной надстройкой. Чрезвычайно изящные экраны — это правильно спроектированные зеленые пояса.

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарокСтранно, что применение этого способа не распространено в автомобилестроении. Наверное это не выгодно самим производителям – автомобильный парк должен обновляться. Сложного в этом ничего нет несмотря на страшное для непосвященного названия. И вот чтобы убедиться в этом полез в интернет. Нашлось много рекламы по продаже и установке уже готовых устройств.

Ошибочно делать экраны «на будущее» вдоль лесов, лугов и пустошей. Ключевые слова: Железобетонные акустические экраны, земные валы, валы, покрытые растительностью, шахты с железобетонной надстройкой, плотные зеленые зоны, типичный дизайн железобетонных экранов. В Польше они пренебрегают. Плохое техническое состояние. Самый подходящий экран в нашей стране. Типичный дизайн железобетонного экрана. Лучшими, и не волнующими споры, являются земляные набережные, насыпи с растительностью или насыпи с железобетонной верхней структурой.

Хорошо спроектированные зеленые пояса также являются хорошим выбором. Однако большая ошибка заключается в том, чтобы строить «перспективные» экраны вдоль лесов, лугов или пустошей. В статье рассматривается описание выбранных методов, позволяющих обнаружить коррозионную потерю стальной арматуры на основе зарегистрированного изменения электрического сопротивления в то время. Формирование и прогрессирование коррозии мы будем контролировать на образцах арматурной стали в виде отдельных стержней и в барах, встроенных в бетон.

Естественно, что производители скрывают конструкцию таких устройств, однако на то и интернет. Все устройства работают по одному принципу – создание разности потенциалов между железом кузова и дополнительными электродами. Различие лишь в применении внешних источников питания или отсутствии оных. Конечно и различные схемы контроля состояния данных устройств, увеличивающие стоимость таких устройств на порядок и выше, но без которых вполне можно обойтись. Рассмотрим несколько вариантов из найденных во всемирной паутине (сохраню по возможности стиль авторов):

Будут также использованы образцы конструкционной стали. Часть образцов будет подвергаться воздействию атмосферной среды, а оставшиеся образцы будут подвергнуты ускоренным испытаниям в климатических камерах. Реальный тип коррозии образцов будет оцениваться визуально и с помощью сканирующей электронной микроскопии.

Полимеры были различны в отношении мягких и твердых, а также гидрофильных сегментов, а также типа и содержания изоцианата, используемого для их синтеза. Первоначальной целью курсов было обучение персонала, связанного с мостовыми объектами. Поэтому курсы предназначены для всех, кто интересуется вопросами защиты от коррозии структур в различных областях народного хозяйства, то есть администраторами и руководителями мостовых сооружений, конструкторами, лицами, утверждающими проекты, подрядчиками конструкций, антикоррозийными защитами и их ремонт, контролеры качества, производители и продавцы антикоррозионных продуктов, а также контрольные и инспекторские инспекторы.

Андрей Космос и его сайт http://www.womanbusiness.ru. Описываемое устройство легко может сделать каждый автолюбитель из недефицитных деталей. Это устройство аналогично тем изделиям (антикорам), которые в настоящее время имеются в продаже, однако стоимость его в несколько раз ниже.

Основное отличие предлагаемого устройства от промышленных состоит в том, что с целью упрощения в нем отсутствуют элементы, сигнализирующие о работоспособности устройства. Однако высокая надежность устройства и соблюдение простейших условий эксплуатации делают эти элементы излишними.

Влияние влажности на поверхность нанесения и нанесение покрытия Новые вмятины на культовом стальном мостике превращаются в 50 Дронов помогают обнаружить коррозию под ней. Что вы знаете о неорганических цинковых покрытиях? В эпоксидной грунтовке, обогащенной цинком, используются стеклянные сферы, активатор цинка для усиления коррозии. У меня была возможность встретиться с главными героями этого приключения. Описание проблемы В связи с необходимостью адаптации существующих энергетических установок к стандартам, установленным Европейским союзом, необходимо модернизировать и расширять все виды проэкологических установок — удаление золы, денитрификацию и десульфуризацию.

Электрическая схема простейшего устройства приведена на рис. 3.

Устройство содержит простейший делитель напряжения, выполненный на двух резисторах сопротивлением R1 и R2 соответственно. Верхний по схеме вывод резистора R1 соединен с положительным выводом аккумулятора, нижний по схеме вывод резистора R2 соединен с отрицательным выводом. При таком соединении резисторов в точке Б относительно метала кузова автомобиля будет положительный потенциал V1, который определяется из выражения:
U = Е * R2/(R1 + R2);
где Е — напряжение аккумулятора (в нашем случае примем 12 В).
Потенциал U должен быть равен защитному потенциалу, при котором прекращается процесс коррозии. При последовательном соединении резисторов через них течет ток, равный I = E/(R1 + R2)
Сила тока (0.1-100 мА) выбирается из условия, что при обычной влажности один анод надежно защищает примерно 4-10 дм2 площади. R2 = V/I; R1 = (E/I) – R2

Эти инвестиции предъявляют очень высокие требования к использованию, постоянному использованию и долговечности. Одним из наиболее важных вопросов для подрядчика является необходимость адекватной защиты бетона от неблагоприятного воздействия на окружающую среду. Примером объекта, подверженного интенсивному воздействию агрессивных химических соединений, в основном сульфатов и хлоридов, являются отстойники резервуаров для очистки сточных вод, в которые они стекают воду, потребляемую после процесса десульфурации влажного дымового газа.

Если по каким-либо причинам необходимо изменить значения защитного потенциала или силу тока, соответствующие значения сопротивлений резисторов могут быть определены из приведенных соотношений. К точке 1 делителя необходимо припаять длинные провода (в изоляции), к другим концам которых припаять стальные пластины-аноды.

Каждый анод представляет собой пластину из низкоуглеродистой стали прямоугольной формы размерами примерно 2х2 см. Для защиты можно использовать и внешние аноды, о чем будет сказано далее. Предлагаемое устройство превращает корпус автомобиля в катод, который в процессе эксплуатации будет восстанавливаться за счет окисления анодов. Конструкция устройства — произвольная.

Метод влажной десульфурации является одним из нескольких методов очистки дымовых газов и заключается в распылении дымовых газов с водяными струями в абсорбере. Сорбент представляет собой сорбент, который уже аэрируется в виде суспензии, а затем обезвоживается благодаря взаимодействию в гидроциклонах.

Одним из способов крепления арматурных стержней против коррозии является применение тонких защитных покрытий на бетонных поверхностях. Бетон восприимчив к повреждениям и может поглощать загрязняющие вещества, такие как углекислый газ, хлориды, масла и жиры, воду и другие растворимые вещества. Покрытия могут защищать бетон от этих примесей, однако один тип покрытия не обеспечивает эффективной защиты для любого применения, поэтому при проектировании защиты покрытий необходимо учитывать несколько факторов: географическое положение и климатические условия, тип стен и потолков, тип изоляции и тип воздушного барьера.

В простейшем случае делитель можно расположить на небольшой изоляционной пластине (гетинакс, пластмасса), верхний вывод резистора R1 и нижний резистора R3 закрепить на этой пластине с помощью винтов, а остальные выводы припаять к металлической пластине, к которой провода от анодов могут также закрепляться с помощью винтов (рис. 4).

Все устройство необходимо поместить в какую-либо изоляционную коробочку или залить эпоксидной смолой. Устройство удобно разместить в моторном отсеке автомобиля вблизи аккумулятора. Противокоррозионные устройства, поступающие в продажу, имеют определенные средства контроля — светодиоды, сигнализирующие о включении устройства и о пропадании потенциала в точке К. Подобное контрольное устройство (например, триггер Шмидта) можно добавить и предлагаемое устройство.

Акриловые покрытия обычно используются для вертикальных или горизонтальных поверхностей, предназначенных для движения пешеходов. Полиуретан, а также эпоксидные смолы могут использоваться на вертикальных поверхностях, горизонтальных для движения пешеходов и на поверхностях для движения автомобилей, в зависимости от состава лакированного продукта. Конструкция защиты должна учитывать основную цель применения покрытия, условия и ремонта поверхности и подготовки поверхности до нанесения покрытия, квалификации подрядчика, планового контроля перекрытия сторонних сторон и разработки программы технического обслуживания.

Однако проще 1 раз в месяц замерить потенциал на выходе устройства в точке Б и убедиться в его работоспособности, тем более что визуальный контроль все равно необходим. Кроме того, введение контрольных элементов увеличивает потребляемую силу тока с 1 до 10 мА, ограничивает тот период времени, в течение которого можно не подзаряжать аккумулятор. Это время можно оценить по следующей методике.

Гольтер также подчеркнул в своем выступлении важность управления активами и разработку комплексной программы устойчивого развития в области «ремонта, защиты и укрепления». Методы защиты металла от коррозии. Основными возможностями защиты материалов от коррозии являются: пассивная защита и активная защита.

Это достигается применением защитных слоев. Слои должны быть более устойчивы к коррозии в данных условиях, чем материал, который мы защищаем. В области защиты от коррозии рациональный выбор материала является наиболее важным методом защиты. В таблице 1 показано поведение нескольких металлов в различных агрессивных средах.

Из руководства по эксплуатации автомобиля, да и из собственной практики автомобилист знает, что устойчивый пуск двигателя с помощью стартера возможен, если емкость аккумулятора составляет не менее 60% номинальной. Если использовать готовое устройство с током потребления 5 мА, то время, в течение которого аккумулятор можно не подзаряжать (Т) составляет 40 дней. С учетом саморазряда аккумулятора это время будет еще меньше. Предлагаемое же устройство фактически не разряжает аккумулятор (время Т при его использовании может составлять более года), что особенно важно при длительном хранении автомобиля.

Способ состоит в покрытии подложки слоем металла, оксида, фосфата, силиката или коррозионно-стойкого органического слоя, чем металлический носитель. Нанесение металлических защитных слоев может осуществляться путем электроосаждения, горячего погружения, распыления, термической диффузии или плакирования.

Анодные покрытия — это те, в которых потенциал основного металла более электроположительный. Например, покрытия из цинка и кадмия на основе железа и стали. Металл в осажденном слое имеет более электроотрицательный потенциал, чем основной металл, а в случае разрывов в защитном слое могут образовываться элементы, в которых осажденный металлический слой играет анод и растворяется, а базовый слой является катодом.

Многим автолюбителям известно, что достаточно появиться небольшой царапине – и ржавчина начинает прямо-таки поглощать автомобиль. Какие только хитрости ни придумывают автомобилисты – различные покрытия, мастики, антикоры… Да вот беда: чтобы обработать с должным качеством все наиболее поражаемые места, приходится порой разбирать весь автомобиль. Поэтому вполне понятно желание автомобилистов приобрести чудо-прибор: один раз потратился и навсегда защитил кузов от ржавчины.

Эти покрытия имеют тот недостаток, что со временем их внешний вид ухудшается. Осажденный металлический слой является более электроположительным, чем основной металл. Эти защитные слои не показывают пористости, царапин, трещин, поэтому они непрерывны. Существование поры или разрывов в слое любой природы приводит к образованию микропилей, в которых металл детали функционирует как анод и растворяется, а слой металла любой природы приводит к образованию микропилей, в которых металл детали функционирует как анод и растворяется и металл в слое является катодом.

Метод катодной защиты от коррозии уже давно применяется на самых разнообразных объектах. Например на кораблях устанавливают специальные протекторы, которые, растворяясь в морской вода, обеспечивают защиту корпуса судна. Подземные трубопроводы перед укладкой обрабатывают антикоррозийными составами и обматывают специальной лентой. На определенном расстоянии от трубопровода закапывают анод (электрод) – металлическую болванку, к которой подключают “плюс” источника постоянного тока, а к самой трубе – “минус”. Благодаря разности потенциалов между электродом и защищаемым металлом в цепи образующегося электролита (влага, соль и т.п.) проходит ток. На аноде происходит освобождение электронов – реакция окисления, и саморастворение катода прекращается .

Поведение нескольких металлов в различных агрессивных средах. Характеристики защитных слоев. Вот почему они сделаны из камней, достаточно толстых около 50 мкм, но не слишком толстых. Анодная или катодная природа металлических отложений зависит от условий коррозии и условий эксплуатации. В зависимости от температуры и рН окружающей среды металлы меняют свой потенциал. Таким образом, цинк больше не защищает сталь при температурах более 70 с — пропускание более электроположительного потенциала.

Металлические слои, нанесенные электрохимически. Это достигается электролизом водных растворов, содержащих осажденные ионы металлов. Покрытие представляет собой катод, и анод может быть нанесен на металл или из инертного материала в условиях гальванопокрытия. Кусок, который должен быть покрыт, после надлежащей подготовки, вводится в электролизную ванну на катоде с требуемой плотностью технологического тока и достаточным временем для достижения желаемой толщины. В зависимости от степени агрессивности агрессивной среды толщина слоя осаждения будет отличаться.

При катодной поляризации металлу нужно сообщить такой отрицательный потенциал, при котором его окисление становится термодинамически маловероятным. Для железа и его сплавов полная защита от коррозии достигается при потенциале 0,1…0,2 В. Дальнейший сдвиг потенциала мало влияет на степень защиты. Плотность защитного тока должна быть в пределах 10…30 мА/м2.

Длительность процесса осаждения для получения желаемой толщины состояния рассчитывается по формуле. Γ = удельный вес осажденного металла. Толщина защитных слоев в соответствии с агрессивностью окружающей среды. Средние условия — наружная эксплуатация, сухой или холодный тропический климат.

Тяжелые условия — работа на открытом воздухе или под закрытыми пространствами в неочищенном умеренном климате или в помещениях, где происходит конденсация. Очень тяжелые условия — эксплуатация снаружи или под покров во влажном тропическом климате или в любом климате с атмосферой, загрязненной агрессивными газами или морской средой.

Кроме того, со временем на металле за счет концентрационной поляризации по кислороду наблюдается дополнительное смещение потенциала в отрицательную сторону, что позволяет периодически выключать устройство (при ремонте автомобиля, зарядке аккумулятора и т.п.).

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарок

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарокУстройство защиты от коррозии состоит из электронного блока и защитных электродов. На корпусе электронного блока размещают световую индикацию работы устройства. Устройство позволяет поддерживать значение потенциала влажных участков поверхности кузова на уровне, необходимом для полной остановки и прекращения коррозийных процессов за счет разрушения защитных электродов.

Цинковое покрытие является анодной защитой, что обеспечивает отличную защиту стали: сухого воздуха или умеренной влажности в воздухе, загрязненном газообразными продуктами сгорания или сернистых газах при контакте с питьевой водой, с охлаждающей водой или в присутствии нефтепродуктов, морской атмосферой, Если слой цинка пассивирован или окрашен, коррозионная стойкость увеличивается.

Это дороже, чем цинк, и применяется в слоях, которые проходят. Муфта не используется в качестве независимого коррозионного покрытия, а используется в качестве промежуточного слоя для никелирования, хромирования, посева на местных карбюраторах во время термической цементной обработки в качестве смазочного слоя при вытягивании или пробивании для получения медного биметалла и железа восстановление использованных деталей.

В качестве защитных электродов (анодов) могут использоваться как разрушающиеся материалы (нержавеющая сталь, алюминий), требующие замены через 4…5 лет, так и неразрушающиеся. В качестве неразрушающихся электродов можно применять карбоксил, магнетит, графит или платину. Защитные электроды выполняются в виде прямоугольных либо круглых пластин площадью 4…9 см2.

Вам будет интересно  Типы и размеры грузовых автомобилей для автомобильных перевозок. Транспорт, габариты контейнеров, виды транспортных средств Емкость кузовов разных грузовых авто

Нихеляция без промежуточных слоев используется для защиты железа в щелочных растворах, медицинских инструментах, машинах из пищевой промышленности, деталей, подверженных трению. При атмосферной атаке он сопротивляется применению только в достаточно толстых и непористых слоях или на промежуточном слое меди. Высокопрочные покрытия достигаются за счет создания глянцевого и полуглянцевого слоя. Чтобы повысить его твердость и улучшить внешний вид, хром осаждается поверх никеля. В очень тонком слое нанесите сталь перед смешиванием в кислотной ванне.

На рисунке приведена схема простого антикоррозийного устройства, которое может успешно справляться с явлениями коррозии. Конечно, в простейшем виде устройство катодной защиты может состоять из защитных электродов и проводов, подключаемых непосредственно на “плюсовую” клемму аккумулятора. Однако здесь трудно контролировать возможное короткое замыкание электродов с кузовом автомобиля и его работу в целом. Для этого в устройстве в цепь делителя напряжения Rl, R2, R3 включен светодиод VD1, который в рабочем режиме светится ровным светом, потребляя незначительный ток от аккумулятора (около 2 мА).

Если вдруг один из защитных электродов замыкается на кузов автомобиля, светодиод VD1 прекращает светиться. В этом случае необходимо найти и устранить замыкание. При повышенной влажности кузова светодиод VD1 может в небольших пределах изменять свое свечение, что указывает на работу катодной защиты. Кроме того, данное устройство имеет высокую надежность, поскольку дает при коротком замыкании выхода с кузовом ток перегрузки не более 25…30мА.

При установке и монтаже устройства следует помнить, что:
— один защитный электрод защищает площадь с радиусом около 0,25…0,35 м;
— защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием;
— использовать можно только эпоксидный клей или шпатлевку на его основе;
— наружную сторону защитных электродов (где нет пайки) нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.

Электронный блок устанавливается в любом месте автомобиля и присоединяется к общей схеме электрооборудования автомобиля. При этом необходимо, чтобы электронный блок оставался включенным даже при отключенном общем электрооборудовании автомобиля.

В целом устройство потребляет не больше чем часы автомобиля и гарантирует длительную эффективную работу даже при сильно разряженном аккумуляторе.

И еще один вариант – тот же принцип, но без применения источников питания (сайт здесь). Он основан на применении металлов с различной электроотрицательностью (см. таблицу Менделеева). Как правило в этом случае используется для разрушаемых электродов наиболее доступный металл – цинк. Хотя можно подобрать и другой:

Катодная защита кузова от коррозии

Ржавчина – враг номер один почти любого металла. «Рыжая чума», с завидным упорством и постоянством превращающая сотни тонн сверкающей высокосортной, легированной стали в груды коричневого порошка. Болезнь, для которой не существует преград… Но существуют лекарства и от нее: гальванические покрытия, лаки и краски, битумы и мастики — все они в принципе должны защитить металл. Но на деле все не так просто.

Очень остро проблема защиты от коррозии стоит, к примеру, перед автомобилистами. Общеизвестно, что если не принимать определенных мер, то кузов автомобиля в течение четырех-пяти лет может превратиться буквально в ржавое решето. Зачастую не помогают ни лакокрасочные покрытия, ни мастики, поскольку кузов имеет немало закрытых полостей, пазух, карманов, коробов, в которых дорожная грязь и сырость, замешанные на поваренной соли, создают великолепные условия для электрохимической коррозии. А при современной толщине автомобильного стального листа это приводит к весьма быстрому его выходу из строя.

Но от коррозии можно не только защищаться броней из лака или хрома, ее можно и обмануть, подсунув в виде приманки такой лакомый кусочек, как металл с более высоким электродным потенциалом.
Электродный потенциал? А какое он, собственно, имеет отношение к коррозии металлов? Оказывается, самое непосредственное.

Если опустить в сосуд с электролитом два электрически связанных между собой металлических электрода, то один из них начнет растворяться, другой же останется в неприкосновенности. Так вот, оказывается, растворяется металл, электродный потенциал которого выше. Это свойство гальванической пары и дало возможность использовать эффект сохранения катода для предохранения от электрохимической коррозии кузова автомобиля.

Судостроители давно уже используют этот принцип предохранения внутренней части трюма от коррозии – они размещают внутри корпуса специальные металлические аноды (из металла с более высоким электродным потенциалом, чем у металла корпуса). Этот способ недавно взяли на вооружение и автомобилисты.

Для анодной защиты применяют оребренные (для увеличения поверхности) куски цинка С помощью вделанных в них постоянных магнитов они прикрепляются в наиболее труднодоступных и загрязняемых местах кузова. Электрическая связь осуществляется многожильным проводом: с помощью винтов цинковый анод подсоединяется к кузову.

На его ребрах собирается дорожная грязь, влага, поваренная соль и комплект «цинк — сталь» начинает работать так, как работает всем известный гальванический элемент. При работе такой «батареи» происходит растворение цинкового анода, катод в данном случае не расходуется.

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарокРис. 1. Комплект для анодной защиты кузова автомобиля:

1 – оребренный цинковый электрод, 2 – соединительный провод.

Процесс коррозии напоминает работу гальванического элемента, поскольку сталь представляет собой, в основном, сплав железа и углерода, то есть веществ с различными электродными потенциалами. При попадании на поверхность такого сплава электролита между молекулами железа и углерода начинает идти электрохимическая реакция, сопровождающаяся растворением анода (железа) и переходом его в гидраты, а затем и в окислы.

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарокРис. 2. Установка электрода в колесной нише.

Присутствие же электрически связанного с основным металлом цинкового электрода в корне меняет картину. По отношению, как к железу, так и к углероду цинк представляет собой металл с более высоким электродным потенциалом, то есть выступает в роли анода. Поэтому при наличии электропроводной среды, которая практически всегда присутствует на поверхностях автомобильного кузова, электрохимическая реакция идет с растворением анода (цинка), при сохранении катода, то есть металла кузова.

Рис. 3. Установка электродов в этих точках наиболее эффективна:

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарок1 – коробчатые усилители брызговиков, 2 – места крепления корпусов фар и подфарников, 3 – нижняя часть передней панели, 4 – полости за щитками-усилителями передних крыльев, 5 – внутренние поверхности дверей, 6, 7 – передняя нижняя часть заднего крыла и арка колеса по стыку с крылом, 8 – фартук задней панели.

Как показали эксперименты, цинкового электрода величиной со спичечную коробку хватает на 3-5 лет.

Обманите «рыжую чуму». Подсуньте ей приманку — кусочек металла с электродным потенциалом выше, чем у стали. Коррозия охотно вцепится в него, забыв про кузов вашего автомобиля как минимум на три год.

И еще один вариант, выпускающийся промышленно и использующий возможности предыдущих (сайт здесь и здесь):

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарокКатодная защита. Сдвиг потенциала металла осуществлен с помощью внешнего источника постоянного тока или соединением с другим металлом, более электроотрицательным по своему электродному потенциалу (протекторный анод). При этом поверхность защищаемого образца (детали конструкции) становится эквипотенциальной и на всех её участках протекают только катодные процессы, а анодные, обусловливающие коррозию, перенесены на вспомогательные электроды. Если, однако, сдвиг потенциала в отрицательную сторону превысит определённое значение, возможна так называемая перезащита, связанная с выделением водорода, изменением состава приэлектродного слоя и другиии явлениями, что может привести к ускорению коррозии. Катодную защиту, как правило, совмещают с нанесением защитных покрытий; необходимо учитывать возможность отслаивания покрытия.
Итак… КАК «ОНО» РАБОТАЕТ.

В основу работы устройства катодно-протекторной защиты кузова автомобиля от коррозии положен принцип катодной поляризации металла кузова и создания гальванической пары между кузовом автомобиля и дополнительным электродом. При катодной поляризации устройство сообщает железу такой отрицательный потенциал, при котором его окисление становится термодинамически маловероятным. Кроме этого, со временем на металле за счет концентрационной поляризации по кислороду наблюдается дополнительное смещение потенциала в отрицательную сторону.

Катодно-протекторная защита работает так же, как «оцинкованный кузов». Фактически она является его полным аналогом. Только дополнительно предохраняет от появления ржавчины труднодоступные и недоступные места. Например: днище автомобиля со стороны салона, внутренние части передних и задних крыльев, передние и задние пороги, пол в салоне под ногами водителя и пассажиров, внутреннюю поверхность крышки багажника и капота двигателя, задние стенки багажного отделения, потолка салона, внутреннюю поверхность дверей, а так же поврежденные в результате аварии части кузова, провода, контакты, болты и шурупы, гайки, тормозные колодки, диски и т.д. Кроме этого, катодно-протекторная защита частично восстанавливает пораженные ржавчиной участки кузова автомобиля.

ПРЕИМУЩЕСТВА УСТРОЙСТВА КАТОДНО-ПРОТЕКТОРНОЙ ЗАЩИТЫ
Энергопотребление на уровне саморазряда аккамуляторной батареи (АБ не разряжается более года без подзарядки);
Отсутствие соединительных элементов между протекторами и электронным блоком;
Простой монтаж;
Подтвержденная временем эффективность (первая установка была произведена на автомобиле в 2004 году);
Использование в качестве протекторов пластин электролитического цинка;
Расчет массы и количества протекторов по оригинальной методике;
Одновременное использование электронного блока и цинковых протекторов для усиления эффективности;
Долговечность (для легкового автомобиля более 10 лет);
Износостойкость;
Отсутствие эксплуатационных расходов;
Увеличение антикоррозийного ресурса для всего автомобиля в целом (а не локальные воздействия);
Низкая стоимость.

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарокУстановка цинковых протекторов:

Протекторы закрепляются на кузове автомобиля с помощью болтового соединения в местах, наиболее подходящих для плотного прилегания прямоугольной пластины к поверхности кузова. При этом место контакта должно быть зачищено до металла. Гальваническая пара материалов днища и пластин создает ток, который переносит атомы цинка с пластин на кузов автомобиля. Один раз в два года необходимо выправлять напильником (или наждачной бумагой) образовавшиеся неровности на поверхности каждой пластины.

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарокВозможные варианты крепления цинковых пластин:
Внутренние части крыльев автомобиля.
Места на днище автомобиля под передними из задними порогами.

Установка электронного блока:

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарокЭлектронный блок (1) устанавливается в подкапотном пространстве автомобиля, на любую жесткую поверхность с помощью саморезов (2), таким образом, чтобы была возможность спуска гибкого монтажного провода (5).
Желтый монтажный провод (минус (-), МАССА) крепится к корпусу автомобиля с помощью самореза (3), место контакта должно быть зачищено до металла.
Красный монтажный провод крепится на плюс (4) аккумулятора (+12 В через предохранитель 0,5 А –установлен на проводе!)
Гибкий монтажный провод (5) (спуск на анод) опускается до контакта с землей.

И вот фото еще одного варианта, но на этот раз с защитными электродами подключающимися к блоку с помощью проводов.

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарокОписывать подробно не стану – все варианты, как видите сами, работают по одному и тому же принципу. Какой выбрать для себя – решайте сами. Если таким способом можно продлить срок службы кузовов, то есть смысл внедрить его и на наших автомобилях.

Защита трубопроводов от коррозии может выполняться посредством множества технологий, наиболее эффективным из которых является электрохимический метод, к которому и относится катодная защита. Зачастую антикоррозийная катодная защита применяется комплексно, вместе с обработкой стальной конструкции изолирующими составами.

В данной статье рассмотрена электрохимическая защита трубопроводов и особенно детально изучен ее катодный подвид. Вы узнаете, в чем заключается суть данного метода, когда его можно использовать и какое оборудование применяется для катодной защиты металлов.

Разновидности катодной защиты

Катодная защита стальных конструкций от коррозии была изобретена в 1820-х годах. Впервые метод был применен в кораблестроении — защитными анодными протекторами был обшит медный корпус судна, что значительно уменьшило скорость корродирования меди. Методика была взята на вооружение и начала активно развиваться, что сделало ее одним из наиболее эффективных методов противокоррозионной защиты на сегодняшний день.

Катодная защита металлов, согласно технологии выполнения, классифицируется на две разновидности:

  • метод №1 — к защищающейся конструкции подсоединяется внешний источник тока, при наличии которого само металлическое изделие выполняется роль катода, тогда как в качестве анодов выступают сторонние инертные электроды.
  • метод №2 — «гальваническая технология «: защищаемая конструкция контактирует с протекторной пластиной изготовленной из металла, имеющего больший электроотрицательный потенциал (к таким металлам относится цинк, алюминий, магний и их сплавы). Функцию анода в данном метода выполняют оба металла, тогда как электрохимическое растворение металла протекторной пластины обеспечивает протекание через защищаемую конструкцию необходимого минимума катодного тока. По истечению времени протекторная пластина полностью разрушается.

Метод №1 — наиболее распространенный. Это простая в реализации противокоррозионная технология, которая эффективно справляется с многими разновидностями коррозии металлов:

  • межкристальная коррозия нержавеющей стали;
  • питтинговая коррозия;
  • растрескивание латуни из повышенного напряжения;
  • коррозия под воздействием блуждающих токов.

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарок

В отличие от первого метода, пригодного для защиты больших по размеру конструкций (применяется для подземных и наземных трубопроводов), гальваническая электрохимзащита предназначена для применения с изделиями малых размеров.

Гальванический метод широко распространен в США, в России он практически не используется, поскольку технология возведения трубопроводов в нашей стране не предусматривает обработку магистралей специальным изоляционным покрытием, которое является обязательным условием для гальванической электрохимзащиты.

Отметим, что без значительно увеличивается коррозия стали под воздействием грунтовых вод, что особенно характерно для весеннего периода и осени. Зимой, после замерзания воды, коррозия от влаги существенно замедляется.

Суть технологии

Катодная противокоррозионная защита осуществляется посредством применения постоянного тока, который подается на защищаемую конструкцию от внешнего источника (чаще всего используются выпрямители, преобразующие переменный ток в постоянный) и делает ее потенциал отрицательным.

Сам объект, подключенный к постоянному току, является «минусом» — катодом, тогда как подведенное к нему анодное заземление, является «плюсом». Ключевым условием эффективности катодной защиты является наличие хорошо проводимой электролитической среды, в качестве которого при защите подземных трубопроводов выступает грунт, тогда как электронный контакт достигается за счет использования металлических материалов с высокой проводимостью.

В процессе реализации технологии между электролитической средой (грунтом) и объектом постоянно поддерживается требуемая разница потенциала тока, величина которой определяется с помощью высокоомного вольтметра.

Особенности катодной защиты трубопроводов

Коррозия — основная причина разгерметизации всех типов трубопроводов. Из-за повреждения металла ржавчиной на нем образуются разрывы, каверны и трещины, приводящие к разрушению стальной конструкции. Данная проблема особенно критична для подземных трубопроводов, которые постоянно пребывают в постоянном контакте с грунтовыми водами.

Катодная защита газопроводов от коррозии выполняется одним из вышеуказанных способов (посредством внешнего выпрямителя либо гальваническим методом). Технология в, данном случае, позволяет уменьшить скорость окисления и растворения металла, из которого изготовлен трубопровод, что достигается за счет смещения его естественного коррозийного потенциала в отрицательную сторону.

Посредством практический испытаний было выяснено, что потенциал катодной поляризации металлов, при котором замедляются все коррозийные процессы, равен -0.85 В , тогда как у подземных трубопроводов в естественном режиме он составляет -0.55 В.

Чтобы противокоррозионная защита было эффективной, необходимо посредством постоянного тока снизить катодный потенциал металла, из которого изготовлен трубопровод, на -0.3 В. В таком случае скорость корродирования стали не превышает 10 микрометров в течении года.

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарок

Катодная защита — наиболее эффективный метод защиты подземных трубопроводов от блуждающих токов. Под понятием блуждающих токов подразумевается электрический заряд, который попадает в землю в результате работы точек заземления ЛЭП, громоотводов либо движения поездов по железнодорожным магистралям. Точное время и место появления блуждающих токов выяснить невозможно.

Коррозийное воздействие блуждающих токов на металл происходит в случае, если металлическая конструкция имеет позитивный потенциал относительно электролита(для подземных трубопроводов электролитом выступает грунт). Катодная защита же делает потенциал металла подземных трубопроводов отрицательным, что устраняет риск их окисления под воздействием блуждающих токов.

Технология применения внешнего источника тока для катодной защиты подземных трубопроводов предпочтительна. Ее преимущества — неограниченный энергоресурс, способный преодолевать удельное сопротивление грунта.

В качестве источника тока противокоррозионная защита используется воздушные линии электропередач мощностью 6 и 10 кВт, если же на территории ЛЭП отсутствуют, могут применяться мобильные генераторы, работающие на газу и дизтопливе.

Детальный обзор технологии катодной защиты от коррозии (видео)

Оборудование для катодной защиты

Для противокоррозионной защиты подземных трубопроводов применяется специальное оборудование — станции катодной защиты (СКЗ), состоящие из следующих узлов:

  • заземление (анод);
  • источник постоянного тока;
  • пункт управления, контроля и измерений;
  • соединительные кабели и провода.

Одна СКЗ, подключенная к электросети либо к автономному генератору, может выполнять катодную защиту сразу нескольких рядом расположенных магистралей подземных трубопроводов. Регулировка тока может выполняться вручную (посредством замены обмотки на трансформаторе) либо в автоматическом режиме (если система укомплектована тиристорами).

Среди станций катодной защиты, применяемых в отечественной промышленности, наиболее технологичной установкой считается Минерва-3000 (спроектированная инженерами из Франции по заказу Газпрома). Мощности данной СКЗ достаточно для эффективной защиты 30 км подземного трубопровода.

Протекторная защита автомобиля от коррозии: 403 — Доступ запрещён – Катодная (электрохимическая) защита кузова автомобиля от коррозии; VPM; Автозапчасти для иномарок

К преимуществам установки относится:

  • повышенная мощность;
  • функция восстановления после перегрузок (обновление происходит за 15 секунд);
  • наличие систем цифрового регулирования для контроля за рабочими режимами;
  • полная герметичность ответственных узлов;
  • возможность подключения оборудования для удаленного контроля.

Также широко востребованными в отечественном строительстве являются установки АСКГ-ТМ, в сравнении с Минервой-3000 они имеют уменьшенную мощность (1-5 кВт), однако в стоковой комплектации система оборудована телеметрическим комплексом, который в автоматическом режиме контролирует работу СКЗ и имеет возможность дистанционного управления.

Станции катодной защиты Минерва-3000 и АСКГ-ТМ требуют питания от электросети мощностью 220 В. Удаленное управление оборудованием выполняется посредством встроенных GPRS модулей. СКЗ имеют достаточно больше габариты — 50*40*90 см. и вес — 50 кг. Минимальный срок службы устройств составляет 20 лет.

Источник http://http://vpm-parts.ru/avto/protektornaya-zashhita-avtomobilya-ot-korrozii-403-dostup-zapreshhyon-katodnaya-elektroximicheskaya-zashhita-kuzova-avtomobilya-ot-korrozii.html
Источник http://http://striphaus.ru/domestic-production/cathodic-electrochemical-corrosion-protection-protection-of-car-bodies-from-corrosion.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *