Технология покраски пластика — сделай свое авто действительно модным

Содержание

Технология покраски пластика авто своими руками

Технология покраски пластика авто своими руками с фото

Все большее количество деталей современных авто изготавливаются из пластика, и в том числе элементы экстерьера — от бамперов и решеток воздухозаборников до аэродинамических элементов и панелей кузова. Поэтому технология покраски пластика пригодится вам всегда – и при плановых кузовных работах, и при аварийном ремонте поврежденной детали.

  • 1 Что нужно знать и иметь перед окраской
  • 2 Метод напыления – легко и просто
  • 3 Окрашивание пластика кистью — без сноровки не обойтись

Что нужно знать и иметь перед окраской

Если говорить об окрашивании двух видов поверхностей – металла и пластика, то они будут между собой различаться лишь требуемыми подручными материалами. Это, в первую очередь, касается тех элементов, с которыми краска будет взаимодействовать непосредственно. Другими словами, пластик сразу не окрашивают, для начала его поверхность нужно подготовить.

Для этого вам потребуются специальные грунтовка и шпаклевка, предназначенные для пластика. Стоит отметить, что если вы собираетесь окрашивать старую поверхность, то вполне достаточно зачистить ее при помощи шкурки. Грунтовку же наносить не обязательно. На данный момент автомобильные детали производятся в основном из полипропилена и лишь некоторые из них – из ПВХ.

Для этих видов пластика нужны разные подготовительные материалы. Обычно детали маркируются, поэтому тип полимера распознать несложно: полипропилен обозначен буквами PP, поливинилхлорид – PVC. Первый из них требует всех этапов подготовки, второй — не требует грунтования. Если же деталь не обладает маркировкой, но тип пластика можно распознать так: ПВХ обладает свойствами самозатухания, то есть почти не горит, полипропилен горит хорошо.

Метод напыления – легко и просто

При покраске пластиковых деталей удобнее всего применять аэрозольные баллончики. Следует учесть, что ни гараж, ни небольшая мастерская не подходят для осуществления подобных работ. Помещение должно хорошо вентилироваться и быть чистым. Присутствие пыли совершенно недопустимо, так как она обладает свойством садиться на только что покрашенные поверхности. Работать необходимо в спецодежде, респираторе и в резиновых перчатках.

Все окрасочные работы с пластиком способом напыления необходимо производить в следующем порядке:

Стоит отметить, что таким образом производится простейшая самостоятельная окраска пластиковых частей автомашины. Сейчас есть много методов нанесения краски, вплоть до художественных, главная цель которых – украсить авто. Сегодняшний ассортимент составов поможет подобрать вам любой цвет, подходящий для того или иного пластикового элемента авто.

Необходимо, чтобы выбранный вами цвет, если это внешняя деталь кузова, сочетался с его общей гаммой цветов. Это правило не работает лишь в том случае, если вы создаете какой-либо экстравагантный тюнинг. Процедуру окрашивания можно производить не только аэрозольными баллонами, но и обычной малярной кисточкой подходящего размера.

Окрашивание пластика кистью — без сноровки не обойтись

Процесс окраски автомобильного пластика кистью отличается от других методов тем, что лакокрасочные материалы, применяемые для этого, как правило, отличаются более длительным временем высыхания.

Это существенно затрудняет работы. На этот период деталь необходимо тщательно предохранить от оседания на нее всевозможных ворсинок и пыли, взвешенных в воздухе, а это совсем непросто. Исходя из этого, таким способом обычно пользуются тогда, когда обрабатываемая деталь не нуждается в особом внимании или находится не на виду.
Стоит сказать, что несмотря на все перечисленные нюансы, ручная окраска пластика автомашины кистью обладает и своими достоинствами. Например, данный метод очень прост, а адгезия материала к поверхности деталей получается надежной.

Ко всему прочему, ручная окраска не имеет альтернативы, если необходимо качественно обработать мелкие элементы. Аэрозольный баллончик в данном случае просто не справится. Если вы приняли решение работать кистью, то примите во внимание, что краску наносить необходимо тонким слоем. Для этого кистью нужно действовать с нажимом.

Максимально близкий к идеалу эффект возникает лишь в том случае, когда инструмент погружается в емкость не весь, а лишь на треть длины рабочей части. Не забывайте также работать быстро и не дожидайтесь высыхания краски на кисточке. Угол окрашивания выдерживайте одинаковый, излишки лакокрасочного материала отжимайте о края емкости.

Стоит учитывать, что в зависимости от периода высыхания применяемой краски, изменяется и технология ее нанесения на поверхность пластика. Если материал высыхает достаточно медленно, то первым этапом его необходимо наносить широкими размашистыми полосами. Вторым этапом краску надо тщательно растушевывать. Стоит отметить, что при такой технике состав втирается в мелкие дефекты и поры поверхности, и деталь приобретает равномерную окраску.

Особенно внимательно при ручном окрашивании отнеситесь к технике безопасности. Внимательно изучайте все инструкции, прилагаемые к лакокрасочным материалам. Не забывайте защитить себя при помощи спецодежды.

Еще одно важное условие успешной работы: приобретайте только сертифицированную продукцию в лицензированных точках продаж, это убережет вас от подделок.

Пластмассовый автомобиль. Самые интересные автомобили из пластика Настоящие авто на фоне современных пластмассовых машин

Конечно же, пластиковые они совсем не полностью. Как правило, речь идет о пластиковом кузове, иногда даже — о пластиковых деталях кузова. Тем не менее, пластмасса играет значительную роль в конструкции всех этих авто.

Soybean Car. Первый в мире пластиковый

Chevrolet Corvette (C1). Первый серийный автомобиль из пластика

А первым пластиковым автомобилем, запущенным в серийное производство, стал Chevrolet Corvette 1953 года выпуска. Каркас этого авто был сделан из металла, а кузов — из набиравшего популярность в те годы стеклопластика. Всего с конвейера сошло 300 экземпляров этой машины, послужившей прародителем одного из самых популярных в мире спорткаров.

Опыты с кузовами из стеклопластика происходили в те времена и в Советском Союзе. К примеру, в 1961 году студентами Харьковского автодорожного института был создан экспериментальный автомобиль ХАДИ-2, ставший первым отечественным пластиковым авто. Вес машины составлял всего 500 килограммов.

Trabant. Самый массовый автомобиль из пластика

Bayer K67. Гордость немецкой химической промышленности

Urbee Hybrid. Пластиковый автомобиль, напечатанный на принтере

BMW i3. Пластиковый электромобиль класса «люкс»

Alfa Romeo 4C. Пластиковый спорткар

Ё-мобиль. Российский пластиковый автомобиль

И спользование алюминия в производстве кузова кажется столь соблазнительной и новой технологией, что забывается, что родом она из первой половины двадцатого века. Как конструктивный материал для авто его опробовали сразу, как только начали отказываться от дерева и кожи, причем именно с деревом он оказался настолько хорошо совместим, что на автомобилях Morgan подобная технология используется до сих пор. Вот только большинство компаний, которые в тридцатые годы успели изготовить немало автомобилей с широким использованием алюминиевых деталей, в дальнейшем от легкого металла отказались. И причиной стал не только дефицит этого материала в годы Второй мировой. Планам фантастов-футуристов о широком использовании алюминия в конструкции машин не суждено было сбыться. Во всяком случае, до нынешнего момента, когда что-то стало меняться.

Алюминий в металлической форме известен не так уж давно – его вывели только в конце XIX века, и он сразу стал цениться весьма высоко. И вовсе не из-за своей редкости, просто до открытия электролитического метода восстановления производство обходилось баснословно дорого, алюминий был дороже золота и платины. Недаром весы, подаренные Менделееву после открытия периодического закона, содержали немало алюминиевых деталей, на тот момент это был поистине королевский подарок. С 1855 по 1890 годы изготовили всего 200 тонн материала по методу Анри Этьена Сент-Клер Девиля, заключающемся в вытеснении алюминия металлическим натрием.

Уже к 1890 году цена упала в 30 раз, а к началу Первой мировой – более чем в сотню. А после тридцатых годов постоянно сохраняла примерный паритет с ценами на стальной прокат, будучи дороже в 3-4 раза. Дефицит тех или иных материалов периодически изменял это соотношение на небольшой срок, но тем не менее в среднем тонна алюминия всегда обходится минимум в три раза дороже обычной стали.

«Крылатым» алюминий называют за сочетание малой массы, прочности и доступности. Этот металл заметно легче стали, на кубометр приходится примерно 2 700 кг против 7 800 кг для типичных сортов стали. Но и прочность ниже, для распространенных сортов стали и алюминия разница примерно в полтора-два раза что по текучести, что по растяжению. Если о конкретных цифрах, то прочность алюминиевого сплава АМг3 – 120/230 Мпа, низкоуглеродистой стали марки 2C10 – 175/315, а вот высокопрочная сталь HC260BD – это уже 240/450 Мпа.

В итоге конструкции из алюминия имеют все шансы быть заметно легче, минимум на треть, но в отдельных случаях превосходство в массе деталей может быть больше, ведь алюминиевые детали имеют более высокую жесткость и заметно более технологичны в изготовлении. Для авиации это сущий подарок, ведь более прочные титановые сплавы куда дороже, и массовое производство попросту недоступно, а магниевые сплавы отличаются высокой коррозийной активностью и повышенной пожароопасностью.

Практика использования на земле

В массовом сознании алюминиевые кузова в основном ассоциируются с машинами марки Audi, хотя первая в кузове D2 появилась лишь в 1994 году. Это была одна из первых крупносерийных цельноалюминиевых машин, хотя изрядная доля крылатого металла была фирменной «фишкой» таких марок, как Land Rover и Aston Martin на протяжении десятков лет, не говоря уже о уже упомянутом Morgan, с его алюминием на деревянном каркасе. Все же реклама творит чудеса.

В первую очередь в новой технологии изготовления кузова подчеркивалась низкая масса и стойкость алюминиевых кузовов к коррозии. Иногда упоминались и другие преимущества алюминиевых конструкций: например, особенные акустические свойства кузовов и пассивная безопасность конструкций из объемной штамповки и литья.

Список машин, в которых алюминиевые детали составляют не менее 60% массы кузова (не путать с полной массой машины), довольно велик. В первую очередь известны модели Audi, A2, A8, R8 и родственная R8 Lamborghini Gallardo. Менее очевидны Ferrari F430, F360, 612, последние поколения Jaguar XJ X350-X351, XJR, XF, XE и F-Pace. Ценители настоящих спортивных машин вспомнят Lotus Elise, а также соплатформенные Opel Speedster и Tesla Roadster. Особенно дотошные читатели припомнят Honda NSX, Spyker и даже Mercedes SLS.

На фото: алюминиевая пространственная рама Audi A2

Часто ошибочно к числу алюминиевых относят современные Land Rover, Range Rover, BMW последних серий и некоторые другие премиум-модели, но там общая доля алюминиевых деталей не так уж велика, а каркас кузова по-прежнему из сталей – обычных и высокой прочности. Цельноалюминиевых машин немного, и большая часть из них – это сравнительно малосерийные конструкции.

Но как же так? Почему при всех своих достоинствах алюминий не применяется максимально широко в строении кузова?

Казалось бы, можно выиграть на массе, а разница в цене материалов не так уж критична на фоне других составляющих стоимости дорогой машины. Тонна «крылатого» стоит сейчас 1 600 долларов – это не так уж много, особенно для премиальной машины. Всему есть объяснения. Правда, для понимания вопроса опять придется немного углубиться в прошлое.

Как алюминий проиграл пластику и стали

Восьмидесятые годы двадцатого века войдут в историю автомобилестроения как время, когда сформировались основные бренды на мировом рынке и создалось соотношение сил, которое мало изменилось и по сей день. Новой крови с тех пор добавили автомобильному рынку лишь китайские компании, в остальном же именно тогда появились основные тренды, классы и тенденции в автомобилестроении. Тогда же наметился перелом в использовании в конструкции машины альтернативных материалов, помимо стали и чугуна.

Благодарить за это стоит увеличившиеся ожидания по части долговечности машин, новые нормы по расходу топлива и пассивной безопасности. Ну и, традиционно, развитие технологий, которые все это позволили. Робкие попытки использовать алюминий в узлах, отвечающих за пассивную безопасность, быстро закончились внедрением лишь простейших элементов в виде брусьев для сминаемых зон и декоративных элементов, которые в общей массе кузова составляли несколько процентов.

А вот сражение за конструкции самого кузова было безнадежно проиграно на тот момент. Победу однозначно одержали производители пластика. Простая технология изготовления крупных деталей из пластика изменила дизайн автомобилей в восьмидесятые. Европейцы удивлялись технологичности и «продвинутости» Ford Sierra и VW Passat B3 с их развитым пластиковым обвесом. Формы и материалы радиаторных решеток, бамперов и других элементов со временем стали соответствовать пластиковым деталям – нечто подобное просто немыслимо изготовить из стали или алюминия.

Тем временем конструкция кузовов машин оставалась традиционно стальной. Задачу повышения прочности кузова и снижения массы выполнили переходом на более широкое использование сталей высокой прочности, их масса в составе кузова непрерывно увеличивалась, с нескольких процентов в конце семидесятых годов и до уверенных 20-40% к середине девяностых у передовых конструкций европейских марок и 10-15% у американских авто.

Проблемы с коррозией решили переходом на оцинкованный прокат и новые технологии окраски, которые позволили увеличить срок гарантии на кузов до 6-10 лет. Алюминий же остался не у дел, его содержание в массе машины даже уменьшилось по сравнению с 60-ми годами – сыграл роль нефтяной кризис, когда дороже стали энергоносители, а значит и сам металл. Где возможно, его заменил пластик, а где пластик не годился – снова сталь.

Алюминий наносит ответный удар

Проиграв битву за экстерьер, через десятилетие алюминий отыграл свое под капотом. В 90-е и 2000-е годы производители массово переходили на алюминиевые корпуса КПП и блоки цилиндров, а затем и детали подвески. Но это было только начало.

Падение цен на алюминий в девяностые годы удачно совпало с ужесточением требований к экономичности и экологичности машин. Помимо уже упомянутых крупных узлов, алюминий прописался во множестве деталей и агрегатов машины, особенно имеющих отношение к пассивной безопасности – кронштейнах рулевого управления, балках-усилителях, опорах моторов. Пригодилась и его природная хрупкость, и широкий диапазон изменения вязкости, и низкая масса.

Дальше – больше, алюминий стал появляться и в конструкции кузова. Про цельноалюминиевые Audi A8 я , но и на более простых машинах стали появляться внешние панели из легкого металла. В первую очередь это навесные панели, капот, передние крылья и двери на авто премиальных марок. Легкосплавными стали подрамники, брызговики и даже усилители. На современных BMW и Audi в передней части кузовов остался практически один алюминий и пластик. Единственное, где позиции стали пока незыблемы – это силовые конструкции.

Про минусы и коррозию

Алюминий – это всегда сложности со сваркой и крепежом. Для соединения со стальными элементами подходят только клепка, болты и склейка, для соединения с другими алюминиевыми деталями – еще сварка и шурупы. Немногие примеры конструкций с использованием легкосплавных несущих элементов проявили себя весьма капризными в эксплуатации и отменно неудобными в восстановлении.

Так, алюминиевые чашки передней подвески на машинах BMW и лонжероны до сих пор имеют сложности с электрохимической коррозией в местах стыков и проблемы с восстановлением соединений после повреждений кузова.

Что касается коррозии алюминия, то бороться с ней даже сложнее, чем с коррозией стали. При более высокой химической активности его стойкость к окислению объясняется в основном образованием защитной пленки окислов на поверхности. А этот способ самозащиты в условиях соединения деталей из кучи разных сплавов оказался бесполезен.

Сложности со сталью, которые могут изменить все

Пока алюминий захватывал новые территории, технологии производства стального проката не стояли на месте. Стоимость высокопрочных сталей снижалась, появились массовые стали горячей штамповки, антикоррозийная защита пусть и с пробуксовками, тоже улучшалась.

Но алюминий все же наступает, и причины этого понятны всем, кто знаком с процессом штамповки и сварки стальных деталей. Да, более прочные стали позволяют облегчить кузов машины и сделать его крепче и жестче. Обратная сторона медали – повышение стоимости самой стали, увеличение цены штамповки, рост цены сварки и сложности с ремонтом поврежденных деталей. Ничего не напоминает? Точно, это те самые проблемы, которые свойственны алюминиевым конструкциям от рождения. Только у высокопрочной стали и традиционные «железные» сложности с коррозией никуда не исчезают.

А вот о высокопрочной стали подобного сказать нельзя. Пакет дорогих легирующих добавок при переработке неизбежно теряется. Более того, он загрязняет вторичное сырье и требует дополнительных расходов по его очистке. Цена на простые марки стали и высокопрочные различается в разы, и при повторном использовании железа вся эта разница будет утеряна.

Что дальше?

Судя по всему, нас ждет алюминиевое будущее. Как вы уже поняли, исходная стоимость сырья не играет сейчас такой роли, как технологичность и экологичность. Набирающее силу «зеленое» лобби способно влиять на популярность алюминиевых машин еще множеством способов, от удачного пиара до уменьшенного сбора на утилизацию. В итоге имидж премиальных брендов требует более широкого использования алюминия и популяризации технологий в массах, с максимальной выгодой для себя, разумеется.

Стальные конструкции остаются уделом дешевых производителей, но по мере удешевления алюминиевых технологий они, несомненно, тоже не устоят перед соблазном, тем более что теоретическое преимущество алюминия можно и даже нужно реализовать. Пока автопроизводители не пытаются форсировать этот переход – конструкции кузовов большинства машин содержат не больше 10-20% алюминия.

То есть «алюминиевое будущее» не придет ни завтра, ни послезавтра.

У традиционного стального кузовостроения впереди виднеется кузовостроительный тупик, избежать которого можно, только переломив тренды на всемерное упрочнение и облегчение конструкций.

Пока прогресс тормозит технологичность процессов сварки и наличие хорошо отлаженных производственных процессов, которые пока можно недорого адаптировать к новым маркам сталей. Увеличить ток сварки, ввести точный контроль параметров, увеличить усилия сжатия, ввести сварку в инертных средах… Пока такие методы помогают, сталь останется основным элементом конструкции. Перестраивать производство слишком дорого, глобальные изменения очень тяжелы для неповоротливого локомотива промышленности.

А что же стоимость владения автомобилем? Да, она растет, и будет расти дальше. Как мы уже неоднократно говорили, современный автопром развитых стран заточен под быстрое обновление автопарка и состоятельного покупателя с доступом к дешевым кредитам под 2-3% годовых. Про страны с реальной инфляцией 10-15% и зарплатами «среднего класса» в районе 1 000 долларов управленцы корпораций думают далеко не в первую очередь. Придется подстраиваться.

При разработке большинства моделей автомобилей конструкторы руководствуются общими принципами: компактность, легкость, экономичность. Особое значение придается снижению массы, потому что вес в той или иной мере влияет на все показатели автомобиля, особенно на расход топлива.

У Porsche 959 двери и капот изготовлены из алюминиевого сплава, бамперы — из полиуретана, а остальная часть кузова — из эпоксидной композиции, армированной волокнами кевлара и стекловолокна

Однако как бы ни усердствовали инженеры в борьбе с лишними килограммами, внедрение различных новых устройств — каталитического нейтрализатора выхлопных газов, антиблокировочных, противобуксовочных и прочих систем, кондиционера, усилителя руля, электростеклоподъемников и т.д., сводит на нет все их усилия. Если “первый” VW Golf в 1974 году весил чуть больше 750 кг, то его преемник прибавил в весе почти на центнер. Golf III в 1992 году тянул уже на тонну, а четвертое поколение этих автомобилей добавило к результату предшественника еще 200 кг. Откуда же взяться экономичному потреблению топлива, если для придания приемлемых динамических характеристик Golf “номер 4” потребовались куда более мощные (и опять-таки тяжелые) моторы?

В том, что кузов McLaren F1 выполнен из композитных материалов, можно убедиться по результатам аварии, которую устроил этому “сокровищу” ценой в 1 млн. долларов его владелец

Выход видится в более широком применении пластмасс и легких сплавов. Еще в середине 80-х аналитики предсказывали, что к 2001 году доля стальных деталей в общей массе автомобиля снизится до уровня в 50-55%. Но такого не случилось, хотя следует признать, что против прежних полусотни килограммов пластмасс, шедших в основном на изготовление узлов интерьера и деталей электроизоляционного назначения, сегодня количество неметаллических деталей в весовом отношении превышает 100, а на некоторых моделях и 150 кг.

ВСЕ ОЧЕНЬ ХОТЯТ, НО ПОКА НЕ ОЧЕНЬ МОГУТ

Пластмассам с трудом удается пробивать себе дорогу. Одной из первых деталей, изготовленных из пластика, был бампер, однако появлению на автомобилях пластмассовые бамперы обязаны не своим техническим достоинствам, а вступлению в США в силу норм о повреждениях при столкновении на низких скоростях. И лишь когда на американские автомобили в 1968 году установили 40 тыс. бамперов из мелкоячеистого полиуретана, инженеры “вспомнили”, что упругие бамперы из пластмассы имеют еще и преимущества в снижении веса, дают полную свободу для дизайнерского творчества, улучшают аэродинамику и, наконец, легко ремонтируются после повреждения. В 1974 году пластмассовые бамперы получили уже 800 тыс., а в 1980-м — более 4,5 млн. автомобилей, произведенных в США.

Пластиковой облицовкой интерьера давно никого не удивишь. Однако сегодня в качестве объемного наполнителя для этих деталей все чаще используется растительное сырье

Что является препятствием для более широкого и быстрого внедрения кузовных деталей из пластмасс на легковых автомобилях? Показательны в этом плане исследования, которые провела фирма Opel при подготовке производства спортивного купе Calibra. Предполагалось, что кузов Calibra будет построен на базе стальной пространственной рамы, которую облицуют пластмассовыми панелями. Это позволило бы раз в три-четыре года согласно автомобильной моде вносить в дизайн кузова существенные коррективы, не изменяя в корне весь технологический процесс изготовления машины. Однако при тщательном анализе выяснилось, что при тех масштабах, которыми планировалось выпускать Calibra, издержки на изготовление пластмассового варианта этой машины были бы на 15% выше, чем версии с цельнометаллическим кузовом. Плюс появлялись серьезные трудности с утилизацией автомобильного лома.


Почти забытая сегодня модель Gordon-Keeble (слева) с кузовом из стеклопластика наделала немало шума в 1964 году. Она могла бы стать великой, однако высокие производственные издержки, соответствующие содержанию высококлассной гоночной команды, погубили ее. Но выпускавшийся в это же время пластмассовый Chevrolet Corvette (справа) доказал свое право на существование

Впрочем, утилизация пластмассы — дело решаемое, и фактически очень многое, если не все, зависит от объемов изготовления автомобиля. Если уровень производства модели не превышает 2-3 тыс. штук в месяц, то по причине больших затрат на изготовление штампов листовой прокат, идущий на изготовление кузова, оказывается дороже пластмассовых панелей. Вот тогда-то и есть смысл сделать ставку на пластмассу, но при более массовом производстве экономическое преимущество оказывается у стального листа. И хотя примеры пластмассовых Trabant, Renault Espace и Chevrolet Corvette, выпускавшихся сотнями тысяч, вроде бы доказывают обратное, пока все же речь идет скорее об исключениях из правила.

Несовершенство технологии формования крупногабаритных пластиковых панелей, а также деталей с повышенной в соответствии с противоударными нормами структурной стойкостью не позволяет расширить масштабы использования неметаллических материалов. Модели Ferrari, Porsche, Lotus, которые по праву можно назвать пластмассовыми, выпускались штучно, что оправдывает использование в них дорогих и сложных в изготовлении композитных материалов. Такие автомобили стали легендарными, но примером для крупносерийного производства они служить не могут.

ВОЗМОЖЕН ЛИ ПЛАСТМАССОВЫЙ ДВИГАТЕЛЬ

В подкапотном пространстве автомобиля остается еще меньше возможностей для энтузиастов использования пластиков. Поэтому до сих пор как революцию вспоминают 1974 год, когда Volkswagen на модели Passat впервые для производства бачков радиатора применил нейлон, армированный стекловолокном. Затем пришел черед вентиляторов из термореактивных полимеров — потому что они весят меньше металлических, выполняются за одну операцию штамповки, не требуют последующей механической обработки и балансировки. Сегодня из пластмассы выполняются уже многие детали, расположенные под капотом автомобиля, однако их весовая доля от общей массы пластиков, используемых в автомобилестроении, все еще не превышает 15-20%.

Ferrari F40 и ее кузов, полностью изготовленный из композиции кевлара и углеродистых волокон

Разумеется, пластмассам трудно конкурировать с традиционными материалами в области силовых нагруженных деталей. И проблема заключается не в показателях прочности, а все в той же высокой стоимости изготовления. Но положительный опыт имеется. Задняя подвеска Chevrolet Corvette комплектуется поперечной пластиковой рессорой, которая успешно справляется со своими обязанностями и при этом весит всего 3,6 кг вместо 19 кг, будь она изготовлена из стали.

Однако возможен ли пластмассовый двигатель? Американская фирма Polimotor ответила на этот вопрос утвердительно. Головка и блок цилиндров, поддон маслокартера, впускной коллектор и еще ряд деталей 4-цилиндрового силового агрегата, разработанного Polimotor, изготовлены из фено-пласта — пластика, обладающего высоким сопротивлением сжатию и изгибу даже при температурах свыше 2000С и способного сохранять химическую стабильность в присутствии бензина, масла, этиленгликоля и воды. Из металла в этом моторе только гильзы цилиндров, коленчатый и распределительный валы, выпускные клапаны и пружины механизма газораспределения. Применение пластмассы дало экономию веса на 60% и снижение уровня шума работающего двигателя на 15%. О серийном изготовлении пластмассового двигателя говорить рановато, однако сам факт существования такого мотора внушает определенный оптимизм.

ПЛАСТМАССОВЫЙ МЕДВЕДЬ

Прошлым летом средства массовой информации сообщили о том, что БелАЗ приобрел у российского АСМ-холдинга (бывшее Министерство автомобильного и сельскохозяйственного машиностроения) лицензию на производство микроавтомобиля “Мишка”. В основу конструкции “Мишки” положена сборно-модульная схема, в которой на каркас из низколегированной стали навешиваются пластмассовые панели. У автомобиля съемный задний колпак, что по желанию владельца обеспечивает быстрое превращение прямо в гараже четырехместного универсала, каковым является базовая версия “Мишки”, в пикап, фургон, кабриолет или ландо (не этого ли, кстати, хотелось Opel при разработке Calibra?).

В конструкции кузова “Мишки” на стальной каркас навешиваются пластмассовые панели

В свое время, обосновывая экономическую целесообразность “Мишки”, АСМ-холдинг подсчитал, что проект будет рентабельным при ежегодном производстве 10 тыс. этих автомобилей. Такой объем вполне согласуется с указанными выше 2-3 тыс. штук ежемесячно, что позволяет поверить в окупаемость “Мишки”. Однако вопрос, способен ли даже такое небольшое количество “косолапых” осилить белорусский автомобильный рынок, оставляем открытым, хотя от этого и зависит, сможет ли Беларусь выпускать собственный легковой автомобиль, да к тому же пластмассовый.

Сергей БОЯРСКИХ

Когда-то на заре химических технологий пластмассовые детали воспринимались как что-то несерьезное и об их применении в автомобильной промышленности никто не задумывался. Сейчас все по-другому: без использования пластмассы не выпускается даже самый дешевый автомобиль.

Именно благодаря широкому применению пластмасс автомобили стали значительно комфортнее, технологичнее, доступнее. Действительно, отсутствие пластмассовых элементов еще в середине ХХ века причиняло владельцам машин много неудобств. Например, внутрь автомобиля во время дождя могла легко попасть вода (сейчас от таких неприятностей предохраняют современные пластиковые уплотнители на стеклах и дверях). В жаркий день водителю нужно было надевать перчатки, чтобы руль из жесткой резины не скользил в руках (сегодня современные пластики, из которых изготавливается руль, не доставляют таких неудобств). В салоне автомобиля обычно было шумно (отсутствовали широко применяемые сейчас звукопоглощающие композитные материалы), сиденья часто протирались (не было полиуретановых покрытий), водителю с собой приходилось возить запасные ремни для элементов двигателя (современные ремни с использованием сверхпрочных пластиков рвутся гораздо реже), а металлические бамперы часто гнулись, отрывались и со временем покрывались ржавчиной (сейчас пластиковый обвес автомобиля более прочен и долговечен).

Если в 1950–1960-х годах средний автомобиль содержал всего около десяти килограммов пластмассы, то в современной машине наберется до 100–150 килограммов пластмассовых материалов, которые в конструкции можно найти повсюду: в подвеске, в двигателе, в электрической проводке, на кузове, в отделке салона. Преимущества пластиковых деталей для автомобильных технологов очевидны: они долговечны, не страдают от ржавчины, при этом по своей прочности зачастую не уступают стали. Кроме того, пластики легкие, а значит, они позволяют существенно снизить вес автомобиля, повысить его динамические характеристики и, что очень актуально сейчас, уменьшить потребление топлива. Еще пластики более доступны по цене, чем некоторые дорогостоящие элементы из нержавеющей стали или цветных металлов. Наконец, они легче поддаются обработке, из них можно получить детали необычных форм и цветов, что очень привлекает автомобильных дизайнеров.

На замену стали

В наступлении пластика на автомобильную промышленность ведущие позиции за немецкими компаниями. В середине ХХ века крупные германские химические концерны стали активно разрабатывать материалы из пластмасс, которые могли бы применяться в производстве автомобилей. Более того, именно немецкие компании первыми решили сделать машину целиком из пластмассы. О такой возможности в начале 1960-х годов заявили специалисты Bayer MaterialScience — подразделения крупнейшего германского химико-фармацевтического концерна Bayer AG. Они предложили использовать для несущего основания кузова конструкцию из так называемого полиуретанового сэндвича — пластикового материала, который оказался мало восприимчив к внешним воздействиям. Весной 1967 года такой кузов был впервые представлен на Ганноверской промышленной выставке. И уже осенью, к началу выставки «К-1967», были найдены решения по изготовлению крыши, капота, крыльев, амортизатора и других частей кузова из полимерных материалов. Для внутренней отделки автомобиля технологи тоже подобрали подходящие пластики.

Так появился первый «пластмассовый автомобиль» LEV-K-67. Он официально получил госномер и был сертифицирован для применения на дорогах общего пользования. Примечательно, что до сих пор эта машина выдерживает тестовые испытания на трассе и в том числе отвечает всем требованиям безопасности. А с 1978 года модель LEV-K-67 занимает место в секции «Транспорт» известного мюнхенского Deutsches Museum как наглядный пример успешного использования пластиков в автомобилестроении.

Зародившиеся в модели LEV-K-67 технологические идеи получили дальнейшее развитие. Например, во время работы над проектом технологами Bayer на основе формованного полиуретана был разработан особый материал для автокресел. Позже он начал применяться на автомобилях Volkswagen. До этого кресла изготавливали из каучукового волокна — натурального материала, соединенного с латексом, менее прочного и долговечного. Новые кресла избавили автомобилистов от этих неудобств.

Большой резонанс в автопроме вызвало появление и эластичной пены Bayflex, которая впервые была использована для производства подлокотников в популярной модели Volkswagen Beetle («Жук»). Она открыла перед автопроизводителями возможность создавать приятные на ощупь пластиковые элементы в салоне. Bayflex стал активно использоваться и в выпуске бамперов. Пластиковые бамперы в 1969 году одной из первых начала внедрять компания Porsche — защитные элементы на кузове машины не гнулись он мелких ударов и не отрывались при неудачных маневрах. Со временем все мировые производители начали выпускать бамперы из пластика.

А полиуретановая пена вообще произвела небольшую революцию. На автомобилях Volkswagen этим материалом впервые начали заполнять пустые пространства кузова, из-за чего уменьшился риск коррозии и в разы — уровень шума.

Начиная с 1970-х годов все мировые автопроизводители хорошо знали такие пластиковые материалы из Германии, как Leguval, Novodur, Pocan, Bayblend, Durethan, Makrolon, Baydur, Bayflex, Termaloy. Из них начинают активно изготавливать решетки радиатора, молдинги, задние фонари, детали дверей, дверные ручки, наружные зеркала, колпаки колес, фары, панели приборов, дворники и многие другие детали автомобиля.

Совсем пластмассовый

В настоящее время ведущие немецкие химические концерны работают над расширением присутствия пластмассовых материалов в автомобиле. Один только концерн Bayer MaterialScience ежегодно инвестирует в подобные исследования 240 млн евро. Эти средства идут на то, чтобы создать новые виды пластмассовых материалов с уникальными потребительскими свойствами.

Большие надежды сегодня связываются с технологиями интегрирования в некоторые виды пластика наночастиц углерода. В результате получаются пластмассы с уникальными свойствами электропроводимости, благодаря чему их можно шире использовать в различных деталях двигателя и электронных системах.

Разработаны пластики, очень устойчивые к агрессивным внешним воздействиям, например к сильно нагретому моторному маслу. Это дает возможность использования пластмассовых материалов для изготовления элементов управления коробкой передач и других деталей двигателя и трансмиссии, которые вступают в соприкосновение с нагретыми маслами и где крайне важны характеристики теплостойкости.

Верх мечтаний разработчиков пластиковых материалов — полностью пластмассовый кузов серийного авто. Сегодня уже многие автопроизводители делают некоторые модели из пластиковых корпусов. Однако сверхпрочные композитные материалы пока еще дорогое удовольствие, и получить такой кузов имеют право только дорогие мелкосерийные автомобили, к примеру, премиальные спорткары, которые благодаря своему легкому весу могут достигать на дороге впечатляющих скоростей. Но в будущем технологи надеются удешевить производство пластика, чтобы массовый выпуск пластмассовых кузовов стал реальностью.

Сомневающимся в том, что машины из пластмассы могут быть даже прочнее, чем из стали, можно посоветовать познакомиться с разработками компании Porsche. Еще в 1986 году на выставке «К-1986» в Дюссельдорфе этот автопроизводитель продемонстрировал посетителям новый пластиковый кузов. Желающие проверить его прочность могли нажать на кнопку, и кузов с большой силой тут же ударялся о стену. За время выставки пластиковый автомобиль подвергался такому «краш-тесту» бесчисленное количество раз и при этом оставался абсолютно целым и невредимым.

Кузов является одной из самых наиважнейших деталей автомобиля. В его основные качества в первую очередь должны входить , прочность, относительная при этом дешевизна, но в тоже время он должен быть оптимально удобным для всех пассажиров салона авто и отличаться стилем и дизайном. Согласитесь, что качества эти порой противоречивы, поэтому между производителями нет единого мнения, какой из кузовных материалов наиболее лучше подходит для производства.

Мы расскажем вам о современных кузовных материалах и рассмотрим их плюсы и минусы.

Стальной кузов

Стальной кузов может быть различной вариантности сплава, что дает совершенно непохожие свойства его разновидностям. Так, к примеру, отличной пластичностью обладает листовая сталь, она же и позволяет производить из себя наружные панели деталей кузова, которые порой могут иметь довольно необычную и сложную форму. Логично, что высокопрочные сорта обладают изрядной энергоемкостью и отличной прочностью, поэтому этот вид стали применяют в производстве силовых деталей кузова. Выгодно еще и то, что за всю автомобилестроения производителям удалось упростить и отладить мастерство изготовления стальных кузовов, что делает их довольно недорогими.

Именно этот фактор сделал стальные кузова на сегодняшний день самыми популярными на автомобильном рынке.

При всех этих плюсах недостатки у стали все же имеются и существенные. Так, например, неудобно то, что стальные детали имеют не малый вес, а также подвержены коррозийным процессам , что вынуждает производителей использовать приемы оцинковки стальных деталей и параллельно искать альтернативные варианты кузовных материалов.

Алюминиевый кузов

Сегодня все чаще можно услышать об использовании в производстве кузовов для авто такого материала как алюминий. Этот металл, который в народе назвали «крылатым», не подвержен образованию ржавчины на деталях корпуса, а сам алюминиевый кузов при такой же прочности и жесткости весит в 2 раза меньше, чем его стальной собрат. Но и тут есть подводные камни.

При всех своих качествах у алюминия имеется весомый недостаток — это хорошая проводимость шума и вибрации.

Поэтому автопроизводителям приходиться усиливать кузов противошумовой изоляцией , что, в конечном счете, приводит к удорожанию машины, да и сам металл стоит дороже стали. Эти факторы способствуют тому, что кузова в последующем может потребовать использования специального оборудования.

В итоге, все это приводит к увеличению цены самого автомобиля. Полностью алюминиевый кузов могут позволить себе далеко не все производители, один из немногих — Audi. Но чаще всего приходится идти на компромисс и компоновать алюминиевые и стальные детали в одном кузове. Так, к примеру, в модели BMW пятой серии вся передняя часть кузовного корпуса изготовлена из алюминия и сварена со стальным каркасом.

Пластиковый кузов

Пластик не так давно считался в автомобилестроении наиболее перспективным кузовным материалом. Он легче даже вышеупомянутого алюминия, ему можно придать любую, даже вычурную и замысловатую форму, да и покраска его обходится намного дешевле, ведь провести ее можно уже на стадии производства, используя различные химические добавки. Ну и наконец, этот материал уж точно не знает, что такое коррозия . Но недостатков у пластика гораздо больше и они довольно значимые.

Так, свойства пластика меняются под влиянием различных температур — мороз делает пластик более хрупким, а жара размягчает этот материал.

По этим причинам и ряду других из пластика нельзя изготавливать те детали, на которые оказываются довольно высокие силовые нагрузки, ремонту некоторые пластиковые детали и вовсе не поддаются, и требуют полной своей замены. Именно это привело к тому, что на сегодняшний день из пластика изготавливают лишь навесы, бампера да крылья.

Композитный кузов

Еще одним видом материала для изготовления кузова являются композитные материалы. Это «гибридный» материал, получаемый из нескольких соединенных вместе. Такое производство делает композитный кузов оптимальным по качествам, так как в нем соединяется все лучшее от каждого компонента.

Кроме того, композитные материалы более долговечны, из них можно изготавливать самые крупные и сплошные детали, что, несомненно, упрощает само производство.

К композитным материалам относится, например, углеволокно, которое, кстати, используется в производстве чаще всего. Из углеволокна изготавливают остовы к кузовам для суперкаров.

К минусам данного материала можно отнести трудоемкость при его использовании в автомобилестроении. Иногда даже необходим ручной труд, что, конечно, в итоге сказывается на цене. Еще один недостаток — это практически невозможность восстановления деталей из углепластика после деформации при авариях . Все это способствует тому, что массово автомобили в углепластиковом кузове практически не выпускаются.

У каждого типа кузовов есть свои достоинства и недостатки. Тут уж все зависит от вкусов потребителей, то есть нас с вами.

Источник http://yes-cars.ru/321-tekhnologiya-pokraski-plastika-sdelay-svoe-avto-deystvitelno-modnym.html
Источник http://petroel.ru/windscreen-replacement-and-repair/plastmassovyi-avtomobil-samye-interesnye-avtomobili-iz-plastika/

Интересные статьи

Leave a Comment