Тормозной компрессор КТ-6 устройство, принцип работы

Содержание

Контроль давления воздуха в системе пневматического привода тормозов

Большинство современных грузовых автомобилей, прицепов к ним и автобусов оснащено пневматической тормозной системой, работа которой связана со взаимодействием большого количества управляющих и исполнительных элементов. Проведение проверки технического состояния и инструментального контроля указанной системы требует от диагностов хорошего понимания общих принципов ее построения и функционирования. Поэтому целесообразно остановиться на конструктивных особенностях данной системы более подробно.

Пневматическая тормозная система — это тормозная система, привод которой осуществляется посредством использования энергии сжатого воздуха. При этом под тормозным приводом подразумевается совокупность элементов, находящихся между органом управления и тормозом и обеспечивающих их функциональную взаимосвязь. В тех случаях, когда торможение осуществляется целиком или частично с помощью источника энергии, не зависящего от водителя, содержащийся в устройстве запас энергии также считается частью привода.

Рис. Пневматическая одноконтурная тормозная система

Привод, как правило, подразделяется на две функциональные части:

  • привод управления
  • энергетический привод

При этом управляющие и питающие магистрали, соединяющие буксирующие транспортные средства и прицепы, не рассматриваются в качестве частей привода.

Привод управления — это совокупность элементов привода, которые управляют функционированием тормозов, включая функцию управления необходимым запасом энергии.

Энергетический привод — совокупность элементов, которые обеспечивают подачу на тормоза энергии, необходимой для их функционирования, включая запас энергии, используемой для работы тормозных механизмов.

Тормоз — это устройство, в котором возникают силы, противодействующие движению транспортного средства. Тормоз может быть фрикционным (когда эти силы возникают в результате трения двух движущихся относительно друг друга частей транспортного средства), электрическим (когда эти силы возникают в результате электромагнитного взаимодействия двух движущихся относительно друг друга, но не соприкасающихся частей транспортного средства), гидравлическим (когда силы возникают в результате действия жидкости, находящейся между двумя движущимися относительно друг друга элементами транспортного средства), моторным (когда эти силы возникают в результате искусственного увеличения тормозящего действия двигателя, передаваемого на колеса).

Рис. Схема простейшего пневмотормоза автомобиля: 1 — ресивер; 2 — педаль; 3 — кран; 4 — тормозной цилиндр; 5 — пружина; 6 — шток тормозного механизма; 7 — тормозная колодка

Элементы системы фрикционного тормоза называются тормозными механизмами.

В пневматических тормозных системах приводом управления являются элементы пневмопривода, с помощью которых подаются сигналы на автоматическое или регулируемое срабатывание элементов энергетического привода. На управляющих элементах пневмопривода (тормозных кранах, клапанах, регуляторах и т.п.) вход управляющего пневмосигнала всегда обозначается цифрой 4. Такое же обозначение данного сигнала имеет место на функциональных и структурных схемах.

Энергетическим приводом в пневматических тормозных системах являются элементы, с помощью которых осуществляется питание сжатым воздухом элементов привода управления или исполнительных элементов энергетического привода (тормозных камер, энергоаккумуляторов, пневмоцилиндров и т.п.). Науправляющих элементах пневмопривода вход питающей магистрали всегда обозначается цифрой 1. Следует отметить, что в ряде случаев управляющий сигнал может одновременно выполнять функции питающего. В этом случае на элементах и схемах пневмопривода вход такого сигнала все равно обозначается цифрой 1.

Любой выходной пневматический сигнал или воздействие обозначается на элементах управления или схемах цифрой 2.

В случае, когда какие-либо элементы управления имеют несколько входов или выходов, относящихся к различным контурам тормозной системы, они маркируются цифрами (в порядке возрастания), следующими после обозначения, указанного выше (например, 11, 12, 21, 22 и т.п.).

Цифрой 3 на элементах тормозного привода обозначается связь с атмосферой.

Рассмотрим функционирование пневмопривода тормозной системы и отдельных ее элементов на примере системы грузового автомобиля, предназначенного для буксирования прицепа и, соответственно, прицепа, буксируемого таким тягачом.

В целях обеспечения надежности работы пневматический привод разделяется на несколько контуров, относительно независимых друг от друга. Первый из них называется питающим и выполняет функцию подготовки сжатого воздуха к применению в пневмосистеме в качестве рабочего тела.

Компрессор — это воздушный насос, который нагнетает воздух в питающий контур и, как правило, осуществляет первичную регулировку его давления. Регулятор давления управляет подачей сжатого воздуха компрессором с целью поддержания его давления в заданных пределах. Осушитель воздуха производит подготовку сжатого воздуха для использования в пневмосистеме.

Основная его задача — отделение от воздуха паров воды и от- фильтровывание различных примесей (в основном паров масла). В современных системах осушитель совмещает функции отделения от примесей и регулировки давления, поэтому в таких системах регулятор давления как отдельный узел отсутствует. Поскольку большинство осушителей работает по принципу регенерации, они имеют отдельный ресивер, с помощью которого обеспечивается регенеративная функция.

В некоторых видах пневмосистем может применяться предохранитель от замерзания, смешивающий со сжатым воздухом летучую низкозамерзающую жидкость для предотвращения замерзания воды, конденсирующейся на элементах тормозного привода при низких температурах. Однако эти устройства в настоящее время применяются редко, так как современные модели осушителей обеспечивают подготовку сжатого воздуха с достаточной эффективностью.

Рис. Схема пневмопривода тормозной системы: а — грузового автомобиля-тягача; б — прицепа; 1 — компрессор; 2 — регулятор давления; 3 — осушитель воздуха; 4 — регенерационный ресивер; 5 — четырехконтурный защитный клапан; 6-8 — ресиверы контуров пневмопривода; 9 — дополнительные потребители воздуха; 10 — манометр; 11 — контрольные и аварийные сигнализаторы; 12 — ножной тормозной кран; 13 — модулятор АБС переднего колеса; 14 — тормозная камера переднего колеса; 15 — обратный клапан; 16 — ручной тормозной кран; 17 — ускорительный клапан; 18 — регулятор тормозных сил задней оси; 19 — модулятор АБС заднего колеса; 20 — тормозная камера с энергоаккумулятором; 21 — тормозной кран управления тормозной системой прицепа; 22, 29 — питающие соединительные головки; 23, 30 — соединительные головки управляющей магистрали; 24 — электронный блок управления АБС тягача; 25 — контрольные лампы АБС; 26 — датчик АБС переднего колеса; 27 — датчик АБС заднего колеса; 28, 44 — соединительная вилка АБС; 31, 32 — фильтры воздуха; 33 — тормозной кран прицепа; 34 — ресивер; 35 — кран растормаживания прицепа; 36 — клапан соотношения давлений; 37 — регулятор тормозных сил передней оси; 38 — модулятор АБС передней оси; 39 — тормозные камеры передней оси; 40 — регулятор тормозных сил задней оси; 41 — модуляторы АБС средней и задней оси; 42 — тормозные камеры средней оси; 43 — тормозные камеры задней оси; 45 — электронный блок управления АБС прицепа; 46 — диагностический разъем АБС прицепа; 47 — датчики АБС передних колес; 48 — датчики АБС задних колес

После прохождения через осушитель сжатый воздух поступает к четырехконтурному защитному клапану. Основные функции данного устройства:

  • разделение потока сжатого воздуха на независимые контуры
  • обеспечение последовательного заполнения контуров сжатым воздухом после возрастания давления в одном из контуров до установленного значения
  • обеспечение герметичности остальных контуров тормозной системы при разгерметизации или большом падении давления в одном из них

Рекомендуем: Как работает система распределения тормозных усилий (EBD)

Четырехконтурный защитный клапан распределяет воздух по следующим контурам:

  • двум независимым контурам рабочей тормозной системы тягача (I и II)
  • контуру стояночной (аварийной) тормозной системы, а также питающему и управляющему контурам прицепа (III)
  • контуру питания пневмоподвески и прочих дополнительных потребителей воздуха (9 на рисунке), например пневмоподвески кабины, сиденья водителя, пневмогидроусилителя сцепления, привода вспомогательной тормозной системы (на рисунке представлен краном управления моторным тормозом)

Каждый из контуров имеет исполнительные элементы, которые и реализуют конечную функцию непосредственного воздействия на тормозной механизм, а контур тормозной системы прицепа имеет соединительные головки для подключения к управляющей и питающей магистралям тягача.

В контурах I и II рабочей тормозной системы сжатый воздух после ресиверов подается к ножному тормозному крану в верхнюю и нижнюю секции соответственно. Внутри данного элемента происходит формирование либо чисто управляющего, либо комбинированного (управляющего и одновременно питающего) сигнала, который поступает непосредственно (как показано на рисунке для тормозов передних колес) или через определенные управляющие элементы 18 (как показано на рисунке для тормозов задних колес) к исполнительным элементам тормозных систем (14, 20). В качестве дополнительных управляющих элементов могут выступать ускорительные (релейные) клапаны, регуляторы тормозных сил, обеспечивающие функцию ускорительных кранов, краны быстрого оттормаживания и т.п. В качестве исполнительных элементов могут служить простые диафрагменные тормозные камеры либо комбинированные тормозные камеры с энергоаккумулятором.

В контуре III сжатый воздух поступает к ручному тормозному крану аварийной и стояночной тормозных систем, где формируется, как правило, чисто управляющий сигнал, который при поступлении на ускорительный клапан 17 аварийной тормозной системы производит подачу или сброс давления воздуха из секции энергоаккумулятора комбинированной тормозной камеры. Воздухом этого же контура осуществляется питание тормозного крана управления тормозами прицепа. Через данный кран происходит питание тормозной системы прицепа посредством соединительной головки, а также формируется управляющий сигнал как результат воздействия сигналов от тормозных кранов рабочей, аварийной и стояночной систем. Этот сигнал подается на соединительную головку управляющей магистрали.

К контурам тормозной системы подсоединяются контрольно- измерительные приборы. Обычно это манометры, указывающие давление в контурах I и II, или один общий манометр. Кроме того, имеются контрольные лампочки, которые сигнализируют о падении давления в контурах пневмопривода.

К пневмосистеме тягача подключен ряд компонентов АБС, реализующих данную функцию для всего комбинированного транспортного средства. В их число входят датчики АБС, считывающие значения угловой скорости колес, электронный блок управления, суммирующий и анализирующий сигналы датчиков и формирующий сигнал для выходного воздействия, модуляторы АБС (электромагнитные клапаны), играющие роль исполнительных механизмов, соединительная вилка прицепа, а также контрольные и диагностические лампы, подающие сигналы о техническом состоянии системы.

Прицеп снабжается сжатым воздухом от тягача через питающую соединительную головку, окрашенную в красный цвет. Пройдя через фильтр и тормозной кран прицепа, воздух поступает в ресивер.

Управляющий пневматический сигнал проходит через соединительную головку управляющей магистрали, окрашенную в желтый цвет, и, пройдя через фильтр, подается на тормозной кран прицепа. Под воздействием этого сигнала в указанном кране формируется выходной управляющий сигнал, который корректируется регуляторами тормозных сил в зависимости от загрузки транспортного средства. На полуприцепах и прицепах, имеющих центральное расположение осей, устанавливается один регулятор тормозных сил. Прицепы с разнесенным положением осей в управляющей магистрали тормозной системы передней оси могут иметь дополнительный клапан согласования давлений, служащий для обеспечения благоприятного соотношения давления воздуха между данными осями. Скорректированный управляющий сигнал подается к модуляторам АБС, которые на прицепах могут играть, кроме того, роль ускорительных клапанов. В зависимости от исполнения системы, а также для соблюдения нормативных требований один модулятор на прицепах может питать исполнительные механизмы оси, отдельного колеса или нескольких колес по одному из бортов прицепа. В пневматической части модуляторов управляющий сигнал преобразуется в сигнал, приводящий в действие исполнительные элементы (тормозные камеры). В ряде случаев на прицепах используются в качестве исполнительных элементов тормозные камеры с энергоаккумуляторами. При этом имеется дополнительная пневматическая магистраль, осуществляющая подачу сжатого воздуха в секции энергоаккумулятора, и устройство приведения в действие стояночной тормозной системы, находящееся вне кабины водителя.

Элементы АБС прицепа включают следующие устройства:

  • колесные датчики
  • блок управления
  • модуляторы давления с функцией ускорительного клапана

Для проверки корректности работы системы служит диагностический разъем, а для электрического питания системы и поступления управляющих сигналов от тягача — соединительная вилка.

Колесные тормозные механизмы, являясь неотъемлемым звеном ходовой части автомобиля, должны обеспечивать стабильность заданных параметров эффективности торможения в процессе эксплуатации, иметь максимальную прочность и надежно функционировать в любых дорожных условиях. Помимо прочего необходимо обеспечить простоту обслуживания и ремонта важнейших с точки зрения безопасности деталей. В настоящее время на грузовиках и автобусах все шире стали использоваться дисковые тормозные механизмы, некогда ставшие символом прогресса в автомобилестроении.

Повышение надежности и снижение трудоемкости обслуживания — приоритеты в разработке дисковых тормозных механизмов для коммерческого транспорта.

Напомним, дисковый тормозной механизм по сравнению с барабанным имеет меньшую массу, более компактен и стабилен, легче охлаждается. Вдобавок ко всему меньшие зазоры между диском и колодками в расторможенном состоянии (0,05–0,1 мм) позволяют повысить быстродействие и передаточное число тормозного привода. Наконец, достигается более равномерное изнашивание фрикционных материалов в результате одинакового распределения давления по поверхности трения.

Облегченный тормозной механизм Haldex ModulT (DBT 22LT) рассчитан на использование в осях с посадочным диаметром шин 22,5”.

Конструктивно дисковый тормозной механизм обычно размещают в углублении обода колеса, что требует дополнительных средств для отвода тепла, например наличия внутренних вентиляционных каналов в тормозных дисках и отверстий в колесных. Такие меры обеспечивают оптимальное прохождение потока воздуха для уменьшения температуры тормозного механизма.

Корпуса (или скобы, как их называют специалисты) пневматических тормозных механизмов бывают неподвижные и подвижные (плавающие). В конструкции со скобой плавающего типа, применяемой в большинстве существующих конструкций дисковых тормозов для большегрузной техники, тормозная камера устанавливается на скобе с внутренней стороны диска. Скоба имеет возможность перемещаться совместно с тормозной колодкой в суппорте по направляющим штифтам. При подаче давления в тормозную камеру поршень прижимает к диску ближнюю, активную колодку. В свою очередь скоба, перемещаясь в противоположном направлении, прижимает к диску дальнюю, реактивную колодку. Для снижения вибрации подвижных деталей в механизме предусмотрены пластинчатые пружины. Именно поэтому производителями тормозных систем неоднократно делались попытки внедрения в среду коммерческого транспорта решений, ранее применимых только в легковых автомобилях. Речь идет о тормозных механизмах с фиксированной скобой, где поршни установлены по разные стороны от тормозного диска. Их основное преимущество — большая жесткость конструкции, а значит и высокая тормозная сила. Недостаток — худший теплоотвод.

Дисковые тормоза WABCO MAXX подходят для легких, средних и тяжелых грузовых автомобилей, автобусов и прицепной техники.

Рекомендуем: В чем отличие минерального масла от синтетического?

Проблему решают разными путями. Самый, пожалуй, необычный был реализован в тормозном механизме ModulD, разработанном компанией Haldex. Суть идеи заключалась в следующем. На ступицу с внешними шлицами монтируются два тормозных диска, возможность их взаимного перемещения достигается благодаря скользящей посадке. Внутренние рабочие поверхности дисков разделяет тормозная колодка. Еще две колодки размещены с внешних сторон дисков. За счет смещения дисков по шлицам происходит равномерное распределение усилия по поверхностям трения. Точно позиционированный пружинный механизм обеспечивает автоматическую регулировку зазора между колодкой и диском при компенсации износа. Максимальное значение тормозного момента составляет 27 кНм. В 2007 году такими механизмами оснащались некоторые модели прицепных осей Gigant. Планировалось распространить это решение на грузовые автомобили, однако этот проект так и не получил развития. Зато путь к совершенству продолжили дисковые тормозные механизмы с подвижной скобой. Далее о них и пойдет речь.

Сегодня приоритеты в разработке тормозных механизмов — это компактность, снижение массы тормозного механизма, повышение надежности и снижение трудоемкости обслуживания. В 2011 году компания Haldex представила новый тормоз для прицепных осей ModulT. Эта облегченная, но достаточно эффективная модель пришла на смену хорошо известному на рынке изделию ModulX. Полное наименование нового тормозного механизма, рассчитанного на использование в осях с посадочным диаметром шин 22,5”, — DBT 22LT.

Масса новинки в сборе с колодками составляет 31 кг. Это, как утверждает производитель, на 4,5 кг (или на 15 %!) меньше, чем у аналогичных конструкций, предлагаемых сегодня конкурентами. Существенное снижение веса узла, однако, не ставит под сомнение показатели надежности и стабильности торможения: как и у представителя предыдущего поколения тормозных механизмов — изделия ModulX, значение максимального тормозного момента при диаметре тормозного диска 430 мм составляет 20 кНм.

Инженеры Haldex считают, что современные тормозные системы для коммерческого транспорта сейчас как никогда требуют специфических решений исходя из ужесточения критериев, предъявляемых к изделиям автопрома. И поскольку автопроизводители стремятся к сокращению расхода топлива, облегченные конструкции надолго останутся в тренде. Использование дискового тормоза ModulТ позволяет сэкономить по 12 кг на каждую ось. Это означает, что трехосный полуприцеп, оснащенный такими тормозными механизмами, сможет взять на борт дополнительные 36 кг полезного груза.

Оптимизация массогабаритных параметров нового изделия проводилась несколькими путями. Во-первых, все детали тормозного механизма были просчитаны методом конечных элементов. На основании этих расчетов изначально задуманный дизайн подвергся существенной переработке.

Во-вторых, внесены изменения в кинематическую схему, отвечающую за передачу усилия от тормозной камеры к колодкам. Вместо обычной для изделий Haldex двухпоршневой схемы (что означает применение двух резьбовых втулок-толкателей) решено использовать однопоршневую. Наконец, в подвижном суппорте ModulT используются всего два направляющих стальных штифта, а не четыре, как в предыдущей модели.

Примененный в ModulT однопоршневой механизм благодаря использованию специальной конструкции резьбового упора обеспечивает равномерное распределение усилия прижима тормозных колодок к тормозному диску и, следовательно, лучшую равномерность износа фрикционного материала. Помимо прочего это минимизирует риск теплового разрушения колодок и диска.

Среди других важных особенностей «тэшки» следует упомянуть усиленную герметизацию направляющих штифтов подвижной скобы, применение необслуживаемых подшипников и использование тефлонового покрытия для улучшения скольжения в паре трения. Особая конструкция гофрированного пыльника позволяет надежно защитить резьбовую втулку нажимного устройства от внешних загрязнений, что в целом способствует повышению долговечности узла.

Если говорить об особенностях техобслуживания, в данном случае все операции максимально упрощены. Взять, к примеру, работу по демонтажу изношенных тормозных колодок, для чего достаточно сдвинуть фиксирующую их зажимную скобу. При этом не требуется специнструмент, а прикладываемое усилие минимально. Опционно доступен измеритель износа, показывающий остаточный ресурс колодок в процентах. В базовом исполнении ModulT предназначен для прицепных осей с нагрузкой до 9 тонн. Имеется отдельная модификация, которая рассчитана на применение в грузовиках и автобусах с ограниченным монтажным пространством в пределах ходовой части.

На выставке COMTRANS 2020 компания WABCO продемонстрировала ряд новых технологий, которые повышают безопасность и эффективность в работе коммерческого транспорта. В частности, гостям мероприятия был представлен однопоршневой пневматический дисковый тормоз MAXX — один из самых легких и эффективных тормозных механизмов для коммерческого транспорта. Устройство c подвижной скобой приводится в действие при помощи тормозной камеры, смонтированной на корпусе механизма. Для компенсации износа колодок и диска тормоз MAXX оборудован автоматическим регулятором зазора. В качестве опции предлагается система мониторинга остаточной толщины тормозных колодок. Посредством встроенного в плавающую скобу потенциометра это оборудование измеряет величину хода поршня в резьбовой втулке и высчитывает степень износа фрикционного материала. Вся информация поступает в систему бортовой диагностики автомобиля.

Монтаж диафрагменного механизма непосредственно на скобе позволяет получить очень компактный узел, а значит, оптимально использовать компоновочное пространство на транспортном средстве. Дисковые тормоза MAXX подходят к колесам с посадочным диаметром шин от 17,5 до 22,5” для легких, средних и тяжелых грузовых автомобилей, автобусов и прицепной техники. Таким образом, инновационные тормозные механизмы MAXX от компании WABCO могут быть применены совместно с колесными дисками практически всех размеров, используемых на коммерческом транспорте во всем мире.

В России WABCO поставляет тормозные механизмы MAXX на конвейер Горьковского автозавода, этими компонентами оснащаются новые модели грузовиков производства «Группы ГАЗ», в частности «ГАЗон NEXT», где используется пневматическая тормозная система.

Рекомендуем: Вентилятор охлаждения двигателя: типы, диагностика, назначение, устройство

ДМИТРИЙ МЕДВЕДЕВ, генеральный директор ООО «ВАБКО РУС»

Характеристики дискового тормоза превышают показатели барабанного. Основные преимущества нового тормоза MAXX — меньше компонентов, впечатляюще легкий вес, высокая надежность, повышенная производительность даже на плохих дорогах. MAXX оснащен новой моноблочной тормозной скобой и усиленным одно­поршневым зажимным механизмом, который обеспечивает повышенные тормозные моменты со значением до 30 кНм для обеспечения максимальной безопасности управления автомобилем. Запатентованный однопоршневой тормозной механизм равномерно передает усилие от толкателя к колодке. Сниженное в два раза количество деталей, по сравнению с двухпоршневой системой, позволило повысить надежность всего механизма и снизить вес. Балансировочная пластина дает преимущество, обеспечивая равномерный износ тормозных колодок.

К слову, по сложности обслуживания тормоз MAXX ничем не отличается от двухпоршневой системы. При этом меньше времени требуется для его проверки, а механизм отвода и подвода колодок работает четче.

Описание рабочей системы

Вам будет интересно:«Мерседес-С-250»: описание моделей и технические характеристики

Как она действует? Принципом работы тормозной системы автомобиля является изменение скорости его езды и полной его остановки (в том числе в экстренных случаях во избежание аварий). Система состоит из привода и механизмов торможения. Для разных автомобилей предусматриваются разные типы систем. Это гидравлическая и пневматическая.

Тормозной компрессор КТ-6 устройство, принцип работы

Компрессор КТ6 — двухступенчатый, трехцилиндровый, поршневой, с воздушным охлаждением, оборудован устройством для перехода на холостой ход.

Компрессор КТ6(рисунок 2) предназначен для получения сжатого воздуха, необходимого для питания тормозной и других пневматических систем и приборов тепловоза, а также для других потребителей.Компрессор КТ7 отличается от компрессора КТ6 направлением вращения коленчатого вала, вентилятора и масляного насоса (против часовой стрелки, если смотреть со стороны привода).

Таблица 3— Техническая характеристика компрессора

Характеристики Значение
Рабочее давление, кгс/см2 7,5…9
Частота вращения коленчатого вала об/мин
Число цилиндров:
низкого давления, шт
высокого давления, шт
Потребляемая мощность при противодействии 9 кгс/см2, кВт
при 850 об/мин 44,1
при 750 об/мин 39,0
Диаметр цилиндров:
низкого давления, мм
высокого давления, мм
Ход поршня (со стороны привода):
левого цилиндра низкого давления, мм
правого цилиндра высокого давления, мм
Цилиндра высокого давления
Охлаждение воздушное
Масло компрессорное:
лето К-19 ГОСТ 1861-73; КС-19 ГОСТ 9243-75
зима К-12 ГОСТ 1861-73;

1 – коробка клапанная цилиндра низкого давления; 2 – поршень цилиндра низкого давления; 3 – цилиндр низкого давления; 4- – коробка клапанная цилиндра высокого давления; 5 – поршень цилиндра высокого давления; 6 – цилиндр высокого давления; 7 – узел шатунов; 8 – холодильник промежуточный; 9 – фильтр воздушный; 10– клапан предохранительный; 11 – рым-болт; 12 – кронштейн вентилятора; 13 – болт натяжной вентилятора; 14– вентилятор; 15– место подвода воздуха от регулятора; 16-манометр; 17– резервуар масляного трубопровода; 18– корпус компрессора; 19– вал коленчатый; 20– насос масляный; 21– клапан редукционный; 22– фильтр масляный;23– сапун; 24– пробка сливная; 25– пробка заправочная; 26– маслоуказатель; 27– балансир дополнительный; 28- винт; 29– шплинт

Рисунок 2 — Компрессор КТ-6

Корпус компрессора литой, чугунный с четырьмя лапами для крепление компрессора.Передняя часть корпуса закрыта съёмной крышкой, в которой установлены один из подшипников коленчатого вала и резиновая манжета. По бокам в корпусе имеются два люка для доступа к деталям внутри корпуса.

К корпусу на шпильках крепятся три чугунных цилиндра с рёбрами (для увеличения поверхности охлаждения), расположенные в одной вертикальной плоскости под углом 60 градусов друг к другу

Боковые цилиндры являются цилиндрами низкого давления, средний — высокого давления.

Коленчатый вал — стальной штампованный, с двумя балансирами, вращается на двух шариковых подшипниках № 318, имеет систему каналов для прохода смазки.

Для улучшения динамических качеств компрессора на основные балансиры коленчатого вала установлены два съёмных дополнительных балансира, каждый из которых закреплён двумя винтами. Винты зашплинтованы.

В торец коленчатого вала запрессована втулка с квадратным отверстием для привода масляного насоса.

Узел шатунов состоит из одного жёсткого и двух прицепных шатунов, шарнирно присоединённых к нему при помощи пальцев.

Главный шатун выполнен из двух частей — шатуна и головки, которые неподвижно соединены между собой пальцами. В шатуны запрессованы бронзовые втулки. Головка шатунов разъёмная. Съёмная крышка расточена вместе с головкой и прикреплена к ней при помощи четырёх шпилек. Гайки крепления крышки зашплинтованы.

В головке шатунов установлены дна тонкостенных стальных вкладыша, залитых баббитом.Вкладыши плотно удерживаются в головке шатунов за счетнатяга и дополнительно застопорены штифтом, который запрессован в крышку головки шатунов.Между головкой шатунов и крышкой имеются регулировочные прокладки.

Величина натяга зависит от толщины пакета прокладок. Номинальная толщина пакета с каждой стороны равна 1мм, одна прокладка толщиной 0,7 мм и три — по 0,1мм.При уменьшении толщины пакета прокладок степень обжатия (натяг) вкладышей увеличивается.Увеличение толщины пакета сверх 1 мм не допускается.

Узел шатунов имеет систему каналов для подвода смазки к верхним головкам шатунов.

Литые поршни (рисунок 2) присоединены к верхним головкам шатунов при помощи поршневых пальцев плавающего типа.На каждом поршне установлены четыре поршневых кольца: два верхних — компрессионные, два нижних — маслосъёмные.Маслосъёмные кольца, устанавливаемые острыми кромками в сторону нижней части поршня, имеют радиальные пазы для прохода масла, снятого с зеркала цилиндра.

На поршнях имеются отверстия и проточки (ниже маслосъёмных колец), предназначенные для отвода масла, снятого кольцами с зеркала цилиндров, внутрь поршней.

К верхним фланцам цилиндров на шпильках прикреплены клапанные коробки аналогичные по конструкции у цилиндров низкого и высокого давления.

Система смазки компрессора комбинированная: под давлением смазываются шатунная шейка коленчатого вала, пальцы прицепных шатунов и поршневые пальцы; остальные детали смазываются разбрызгиванием.

Для смазки масло заливают в картер компрессора через отверстие в боковой крышке, закрываемое пробкой, или через патрубок сапуна.

Уровень масла контролируют с помощью маслоуказателя автомобильного типа.Очистка масла осуществляется в масляном фильтре.

Слив масла из картера производят через отверстия, расположенные с двух сторон картера, закрываемые пробками.Подача смазки осуществляется масляным насосом лопастного типа.

Таблица 4 — Перечень работ, выполняемых при ТО и ТР

Содержание работ ТОиР
Тормозной компрессор 2ТЭ116.00.00.008-01 РЭ3, ПКБ ЦТ25.0107 ТО-2 ТР СР
1) Проверить крепление электродвигателя, редуктора и компрессора, ослабленные крепления подтянуть + +
2) Проверить отсутствие трещин в настильном листе под фундаментами редуктора и компрессора + +
3) Проверить натяжение ремня привода вентилятора компрессора, состояние шкива и ремня + +
4) Осмотреть и проверить крепление муфт привода редуктора и компрессора, ослабленные крепления подтянуть + +
5) Проверить отсутствие течей по лабиринтным уплотнениям валов редуктора, чистоту отверстий пробки (сапуна) +
6) Проверить исправность и крепление соединительных рукавов, каналов, труб вентиляции, обратив особое внимание на уплотнение по люкам и фланцевым соединениям (неисправные рукава заменить) + + +
7) Проверить состояние и крепление вентилятора охлаждения. Произвести ремонт, затяжку креплений и контровку. + +
Выполнить работы по тормозному компрессору согласно документации предприятия-изготовителя, прилагаемой ктепловозу + + +

Таблица 5– Перечень возможных неисправностей в работе компрессора

Описание гидравлической системы

Вам будет интересно:Что такое «Вебасто»: принцип работы устройства

Принципом работы гидравлической тормозной системы является воздействие педали на колодки с использованием жидкости или гидравлики. Она состоит из следующих компонентов:

  • основной гидравлический цилиндр;
  • вакуумный узел усиления;
  • ABS или система контроля блокировки колес;
  • модуль контроля давления на задние диски;
  • основные тормозные цилиндры;
  • гидравлический контур.

Классификация пневматических тормозных систем

Пневматический тормозной привод используют отдельно или в комплексе с другими системами (примеры — комбинированные тормозные системы электропневматического или пневмогидравлического типа).

Пневматические тормозные системы также классифицируют по количеству рабочих контуров-магистралей. Встречаются 3 вида систем:

  • одноконтурные;
  • двухконтурные;
  • многоконтурные.

Одноконтурные системы. Особенность — магистрали на передние и задние колеса объединены в одну ветку, а интенсивность потока сжатого воздуха контролирует один тормозной кран. Одноконтурная модель пневматической тормозной системы — устаревший тип конструкции, который в большинстве случаев встречается только на старых моделях грузовых автомобилей и автобусов.

Двухконтурные системы. Отличия понятны из названия — магистрали тормозной системы автомобиля разделены на две ветки. Одна ветка передает сжатый воздух на передние колеса, вторая — на задние. Поток энергоносителя контролируют два тормозных крана — по одному на каждый контур магистралей. Двухконтурная конструкция надежнее, чем одноконтурная. Если вышла из строя ветка задней оси, передние тормозные узлы продолжают функционировать и наоборот.

Многоконтурные системы. Особенность — сложная, но эффективная и надежная конструкция. Многоконтурные пневматические системы встречаются в крупных грузовых автомобилях и состоят из трех и больше контуров. Многоконтурная тормозная пневмосистема увеличивает устойчивость, облегчает управление и остановку грузовика.

Описание пневматической системы

Принцип работы пневматической тормозной системы в основном аналогичен гидравлической. В ее состав входит воздушный компрессор, который приводом от двигателя накачивает атмосферный воздух в цилиндры. Контроллер поддерживает предусмотренное параметрами давление.

Воздух для торможения накапливается в специальных баллонах или ресиверах. По мере его выхода из контура он закачивается дополнительно компрессором. При надавливании водителем педали воздух из ресиверов или баллонов по контуру переходит в тормозные модули. Последние имеют специальные штоки, которые уже приводят в действие механизмы торможения. Колодки прижимаются к дискам (барабанам) колес. За счет этого транспорт начинает снижать скорость и постепенно останавливаться. После отпускания педали водителем воздух из системы выходит обратно наружу, и цикл повторяется. Пружины возвращают штоки в их первоначальное положение.

Вам будет интересно  Почему не держит стояночный тормоз и как его подтянуть - Автобаза Ремонт

В основном это принцип работы тормозной системы КамАЗа. Такая система часто используется на грузовых автомобилях ввиду своей эффективности. Если гидравлику следует проверять, доливать жидкость, то воздушная система требует меньше внимания, а также не нуждается в постоянном доливе жидкости.

Аппараты тормозного пневмопривода

Автомобиль оборудован независящими один от другого тормозами — рабочим и стояночным. Тормозной механизм стояночного тормоза — барабанного типа, с двумя внутренними колодками и механическим приводом, установлен на валу раздаточной коробки. Стояночный тормоз можно использовать для торможения при движении только в аварийных случаях. Пользоваться им при обычной езде не разрешается, так как в этом случае сильно нагружаются механизмы трансмиссии, а при длительном притормаживании автомобиля он нагревается до высокой температуры и может выйти из строя.

Следует помнить, что при торможении стояночным тормозом сигнал торможения не включается.

Тормозные механизмы рабочего тормоза — барабанного типа, установлены на всех колесах автомобиля. Привод рабочего тормоза пневматический (см. рис. 58).

При нажатии на педаль сжатый воздух из воздушного баллона поступает через тормозной кран в тормозные камеры. Под давлением воздуха штоки тормозных камер перемещаются, поворачивая при этом разжимные кулаки, которые прижимают колодки к тормозным барабанам. При отпускании педали тормозной кран перекрывает доступ воздуха из воздушного баллона и воздух из тормозных камер выходит в атмосферу. Пневматическая система обеспечивает также приведение в действие тормозов прицепа с пневматическим однопроводным приводом.

Схема пневматической системы автомобиля ЗИЛ

Рис. 58. Схема пневматической системы автомобиля:

1 — датчик контрольной лампы аварийного падения давления воздуха; 2 и 22 — тормозные камеры; 3 — компрессор; 4 — регулятор давления; 5 — комбинированный кран управления давлением в шинах; 6 — предохранительный клапан; 7 — стеклоочиститель; 8 — выключатель стеклоочистителя; 9 — шланг к манометру контроля давления воздуха в тормозных камерах; 10 — шланг к манометру контроля давления воздуха в пневмосистеме; 11 — кран отбора воздуха; 12 — манометр контроля давления в тормозных системах; 13 — манометр контроля давления в шинах; 14 — кран слива конденсата; 15 — электропневмоклапан; 16 — шланг управления включением переднего моста; 17 — воздушный баллон; 18 — раздаточная коробка; 19 — стояночный тормоз; 20 — трубопровод тормозной системы; 21 — трубопровод системы регулирования давления воздуха в шинах; 23 — соединительная головка; 24 — головка подвода воздуха к шине через полуось; 25 — канал подвода воздуха; 26 — шинный кран; 27 — кнопка пневматического звукового сигнала; 28 — звуковой сигнал; 29 — комбинированный тормозной кран; 30 — выключатель сигнала торможения; 31 — тормозная педаль

Стояночный тормоз ЗИЛ

Рис. 72. Стояночный тормоз:

1 — раздаточная коробка; 2 — колодки; 3 — щиток; 4 — ось колодки; 5 — накладка; 6 — малая оттяжная пружина; 7 — кронштейн; 8 — болт; 9 — ограничительная шайба; 10 — фланец ведомого вала; 11 — гайка; 12 — большая оттяжная пружина; 13 — разжимной кулак; 14 — сухарь колодки; 15 — сальник; 16 — палец штанги; 17 — регулировочный рычаг; 18 — штанга; 19 — барабан тормоза; 20 — угловой рычаг; 21 — кронштейн углового рычага; 22 — тяга привода; 23 — вилка тяги; 24 — палец; 25 — ушко тяги; 26 — зубчатый сектор рычага привода; 27 — стопорная защелка; 28 — тяга стояночного привода тормозного крапа; 29 — тяга защелки; 30 — рычаг привода; 31 — рукоятка тяги защелки

Стояночный тормоз (рис. 72) имеет две симметричные колодки 2 с прикрепленными к ним фрикционными накладками и сухарями 14, которые шарнирно опираются на одну опорную ось 4, закрепленную в кронштейне 7 тормоза. В средней части колодки опираются бобышками на выступы кронштейна и удерживаются от боковых смещений шайбами, установленными на втулках и зажатыми болтами. Оттяжные пружины 6 и 12 возвращают колодки в отторможенное положение, прижимая их к разжимному кулаку и оси 4. На разжимном кулаке установлен регулировочный рычаг 17, к которому присоединяется тяга привода стояночного тормоза. Барабан 19 стояночного тормоза с фланцем насажен на шлицевой конец вала раздаточной коробки и закреплен гайкой 11.

Для предохранения тормоза от попадания в него масла в кронштейне установлен сальник 15, а на фланце 10 — маслоотражатель, который сбрасывает просочившееся масло через специальное отверстие в кронштейне наружу. Щиток 3 тормоза, прикрепленный к кронштейну, защищает механизм от попадания в него грязи.

Регулировка стояночного тормоза необходима для уменьшения зазоров между колодками и барабаном, увеличивающихся вследствие изнашивания накладок. Наличие больших зазоров обнаруживают по увеличению хода рычага привода. Стояночный тормоз регулируют тягой 22 и регулировочным рычагом 17.

Регулировку следует проводить на холодном тормозе в таком порядке.

1. Отсоединить резьбовую вилку 23 тяги 22 привода от рычага 30.

2. Отвести рычаг 30 в переднее крайнее положение до упора.

3. Изменяя длину тяги 22 резьбовой вилкой 23, добиться такого положения, чтобы после присоединения тяги к рычагу 30 полное затормаживание происходило при перемещении стопорной защелки на два—шесть зубьев сектора 26, а при возвращении рычага 30 в переднее положение барабан свободно вращался, не задевая за колодки тормоза. Если укороченная до предела тяга не обеспечивает затормаживания при перемещении стопорной защелки на шесть зубьев сектора, необходимо перенести палец 16, к которому присоединен нижний конец штанги 18, в следующее отверстие регулировочного рычага 17 тормоза, надежно затянуть и зашплинтовать гайку.

После этого следует провести регулировку стояночного тормоза в последовательности, указанной в пи. 2 и 3.

Обслуживание стояночного тормоза и привода заключается в осмотре, очистке от грязи и проверке креплений.

Если от поверхности тормозных накладок до головок заклепок остается менее 0,5 мм, накладки надо сменить.

Необходимо предохранять накладки колодок от попадания на них масла, так как могут измениться фрикционные свойства накладок.

Трущиеся поверхности шарнирных соединений тормоза и привода надо смазывать в соответствии с указаниями карты смазывания.

При разборке стояночного тормоза неправильное снятие оттяжных пружин 6 и 12 колодок может привести к поломке крючков на них. Наиболее удобно снимать пружины специальными щипцами, которые можно изготовить в автохозяйстве. При отсутствии щипцов рекомендуется снимать колодки в следующем порядке: вывернуть болт 8, снять ограничительные шайбы. Затем снять одновременно колодки с оси, после чего пружины легко освободятся. Устанавливать колодки следует в обратном порядке, т. е. зацепить пружины за крючки на обеих колодках, раздвинуть колодки и надеть их на ось и кулак, а затем закрепить.

Рабочий тормоз (рис. 73) имеет две тормозные колодки с прикрепленными к ним фрикционными накладками. Колодки установлены на эксцентриковые оси, позволяющие сцентрировать колодки с тормозным барабаном.

При торможении колодки раздвигаются кулаком 4 и прижимаются к внутренней поверхности барабана 11.

Регулировка рабочего тормоза может быть полная или частичная. Как перед полной, так и перед частичной регулировкой необходимо проверить правильность затяжки подшипников ступиц колес.

При регулировке тормоза должны быть холодными.

Полную регулировку надо проводить только после разборки и ремонта тормозов или нарушения концентричности рабочих поверхностей тормозных колодок и барабанов в результате ослабления крепления осей колодок.

Тормозной механизм рабочей тормозной системы

Рис. 73. Тормозной механизм рабочей тормозной системы:

1 — тормозная колодка; 2 — стяжная пружина колодок; 3 — шплинтовая проволока болтов крепления опоры разжимного кулака; 4 — разжимной кулак; 5 — ось червяка регулировочного рычага; 6 — регулировочный рычаг; 7 — кронштейн; 8 — тормозная камера; 9 — чека оси колодки; 10 — ось колодки; 11 — тормозной барабан

Полную регулировку необходимо проводить в следующем порядке.

1. Ослабить гайки крепления осей колодок и сблизить эксцентрики, повернув оси метками одну к другой. Метки поставлены на наружных, выступающих над гайками, торцах осей. Отпустить гайки болтов крепления кронштейна разжимного кулака.

2. Подать в тормозную камеру сжатый воздух под давлением 0,1 … 0,15 МПа (1 … 1,5 кгс/см2), нажимая на педаль рабочего тормоза при наличии воздуха в системе, или воспользоваться сжатым воздухом из гаражной установки.

При отсутствии сжатого воздуха извлечь палец штока тормозной камеры и, нажимая на регулировочный рычаг в сторону хода штока тормозной камеры при затормаживании, прижать колодки к тормозному барабану.

Поворачивая эксцентриковые оси в одну и другую сторону, сцентрировать колодки, обеспечив плотное прилегание их к тормозному барабану. Прилегание колодок к барабану проверяют щупом через окно в тормозном барабане (или на щите) на расстоянии 20 … 30 мм от наружных концов накладок. Щуп 0,1 мм не должен проходить на всю ширину накладки.

3. Не прекращая подачи сжатого воздуха в тормозную камеру, а при отсутствии сжатого воздуха не опуская регулировочный рычаг и удерживая ось колодок от проворачивания, надежно затянуть гайки осей и гайки болтов крепления кронштейна разжимного кулака к опорному диску тормоза.

4. Прекратить подачу сжатого воздуха, а при отсутствии сжатого воздуха отпустить регулировочный рычаг и присоединить шток тормозной камеры.

5. Повернуть ось червяка регулировочного рычага так, чтобы ход штока тормозной камеры был в пределах 20 … 30 мм.

Убедиться, что при включении и выключении подачи воздуха штоки тормозных камер перемещаются быстро, без заеданий.

6. Проверить, как вращаются в отторможенном состоянии барабаны: они должны вращаться равномерно и свободно, не касаясь колодок. При указанной регулировке между тормозным барабаном и колодками могут быть примерно следующие зазоры: у разжимного кулака 0,4 мм, у осей колодок 0,2 мм (значения зазоров даны для справок).

Частичную регулировку проводят для уменьшения зазора между колодками и барабаном, увеличивающегося вследствие изнашивания накладок. Наличие больших зазоров, при которых требуется проведение частичной регулировки, обнаруживают по увеличению хода штоков тормозных камер, который не должен превышать 40 мм.

Частичную регулировку выполняют только вращением осей червяков регулировочных рычагов так же, как и при полной регулировке (см. пп. 5 и 6).

При частичной регулировке не следует ослаблять гайки осей колодок и изменять установку осей, так как это может привести к нарушению плотного прилегания колодок к барабану при торможении.

В случае изменения установки осей необходимо проводить полную регулировку. При проведении как полной, так и частичной регулировки надо устанавливать наименьший ход штоков тормозных камер (примерно 20 мм).

Для получения одинаковой эффективности торможения правых и левых колес надо, чтобы ходы штоков правых и левых камер на каждом мосту отличались незначительно.

Обслуживание рабочего тормоза заключается в регулировании зазора между колодками и барабанами, а также в осмотре, очистке тормозов и проверке креплений.

При осмотре необходимо проверять следующее.

1. Надежность крепления тормозных дисков к цапфам мостов.

2. Затяжку гаек осей колодок и гаек болтов крепления кронштейнов разжимных кулаков.

3. Состояние фрикционных накладок. Если расстояние от поверхностей накладок до головок заклепок составляет менее 0,5 мм, надо сменить тормозные накладки. Следует предохранять накладки от попадания на них масла, так как фрикционные свойства промасленных накладок нельзя полностью восстановить чисткой и промыванием. Если одну из накладок левого или правого тормоза необходимо заменить, то нужно заменить все накладки у обоих тормозов (левого и правого).

4. Состояние осей колодок. Если колодки не вращаются свободно на осях, надо, не нарушая установки осей, снять колодки, очистить рабочие поверхности от ржавчины и смазать их тонким слоем густого смазочного материала. После установки колодок удалить лишнее количество смазочного материала.

5. Валы разжимных кулаков. Валы должны вращаться в кронштейне свободно, без заеданий. Смазывают валы в соответствии с картой смазывания. Следует иметь в виду, что количество смазочного материала должно быть умеренным, так как лишний смазочный материал может попасть в тормоз.

6. Действие педали. Педаль после нажатия должна легко возвращаться в исходное положение. Если этого не происходит, надо проверить действие оттяжной пружины и перемещение деталей привода тормозного крана, которое должно быть свободным.

Аппараты тормозного пневмопривода Комбинированный тормозной кран ЗИЛ

Комбинированный тормозной кран (рис. 77), состоящий из двух секций, объединенных в одном корпусе, предназначен для управления пневмоприводом тормозов автомобиля-тягача и прицепа (полуприцепа).

Механический привод обеих секций осуществляется парой рычагов. Нижняя секция управляет тормозами автомобиля-тягача, а верхняя — тормозами прицепа или полуприцепа. У обеих секций унифицированы клапаны и мембранные следящие механизмы. Два сдвоенных сферических клапана вместе с впускными седлами и возвратными пружинами 13 установлены в крышках 18 крана. Две следящие мембраны 9 с седлами 10 выпускных клапанов зажаты между корпусом 8 крана и крышками 18.

В каждой секции установлена уравновешивающая пружина, регулирующая давление сжатого воздуха, подаваемого тормозным краном, в зависимости от усилия, приложенного к рычагу крана. Уравновешивающая пружина 5 секции прицепа смонтирована на штоке 7; ее предварительное натяжение регулируется перемещением направляющей 6 штока. Уравновешивающая пружина 20 секции тормозов тягача смонтирована в стакане 21; предварительный натяг пружины регулируется прокладками. С помощью рычага 17, соединенного с приводом стояночного тормоза, можно привести в действие только секцию прицепа с последующим затормаживанием автомобиля стояночным тормозом.

При заполнении пневматической системы сжатым воздухом последний при закрытом выпускном клапане 12 через открытый впускной клапан 15 секции прицепа поступает в соединительную магистраль прицепа. При достижении заданного давления пружина 5 сжимается, и впускной клапан 15 перекрывает магистраль прицепа. После этого оба клапана секции прицепа и выпускной клапан тягача остаются закрытыми.

В случае торможения усилие от педали передается на приводной рычаг 4. Вначале открывается выпускной клапан 12 секции прицепа. Сжатый воздух из магистрали прицепа выходит в атмосферу. Затем закрывается выпускной клапан и открывается впускной клапан секции тягача, и сжатый воздух поступает в тормозные камеры тягача.

Тормозной кран ЗИЛ

Рис. 77. Тормозной кран:

1 — тяга привода тормозного крана; 2 — защитный чехол; 3 — крышка корпуса рычагов; 4 — приводной рычаг; 5 — уравновешивающая пружина секции, управляющей тормозами прицепа; 6 — направляющая штока; 7 — шток; 8 — корпус; 9 — мембрана; 10 — седло выпускного клапана; 11 — уплотнительное кольцо; 12 — выпускной клапан; 13 — возвратная пружина; 14 — седло впускного клапана; 15 — впускной клапан; 16 — пробка; 17 — рычаг, соединенный с приводом стояночного тормоза; 18 — крышка; 19 — клапан впускного отверстия; 20 — уравновешивающая пружина секции, управляющей тормозами автомобиля; 21 — стакан уравновешивающей пружины; 22 — контргайка; 23 — малый рычаг; 24 — корпус рычагов; 25 — ограничитель хода штока; 26 — валик рычага; 27 — стяжной хомут; 28 — упор рычага привода; I — в магистраль прицепа; II — к тормозным камерам; III — от ресивера; IV — в атмосферу

При оттормаживании снимается нагрузка с приводного рычага, закрывается выпускной клапан, открывается впускной клапан секции прицепа, и сжатый воздух из воздушных баллонов поступает в магистраль прицепа; одновременно закрывается впускной клапан, открывается выпускной клапан секции тягача, и сжатый воздух из тормозных камер тягача выходит в атмосферу.

Обслуживание крана заключается в осмотре, проверке герметичности, работы крана и очистке его от грязи. Необходимо следить за состоянием защитного резинового чехла и плотностью крепления крышек к корпусу, так как попадание грязи внутрь крана на трущиеся поверхности может привести к выходу его из строя.

Необходимо проверять герметичность тормозного крана при помощи мыльной эмульсии. Утечка воздуха через выпускное отверстие в отторможенном положении свидетельствует о негерметичности выпускного клапана секции, управляющей рабочим тормозом прицепа, либо впускного клапана секции, управляющей рабочим тормозом автомобиля. При торможении через выпускное отверстие должен выйти воздух из магистрали прицепа; если через 1 … 2 с после нажатия на педаль воздух продолжает выходить, это свидетельствует о неплотности впускного клапана секции, управляющей рабочим тормозом прицепа, или выпускного клапана секции, управляющей рабочим тормозом автомобиля. Если после двух-трех повторных торможений утечка воздуха продолжается, следует извлечь и осмотреть указанные клапаны и их седла.

При необходимости надо отрегулировать в отторможенном состоянии давление воздуха в секции, управляющей тормозами прицепа, которое должно быть в пределах 0,52 … 0,57 МПа (5,2 … 5,7 кгс/см2); при ввинчивании направляющей давление повышается. После регулировки давления положение направляющей штока необходимо зафиксировать контргайкой 22.

Разборку, чистку и регулировку тормозного крана должен выполнять квалифицированный механик и только в условиях мастерской.

Утечка воздуха по плоскости разъема корпуса тормозного крана и его крышек указывает на повреждение мембраны или на негерметичность деталей крана в месте сопряжения их с мембраной. Поврежденную мембрану следует заменить.

Соединительная головка служит для соединения воздухопроводов автомобиля и прицепа. Крышка предохраняет систему от попадания в нее пыли и грязи. Если соединительная головка автомобиля не соединена с головкой прицепа, крышка всегда должна быть закрыта.

Перед соединением головок тягача и прицепа следует затормозить автомобиль стояночным тормозом. Если воздух выходит между соединенными головками, проверить резиновые уплотнители и при необходимости заменить их.

Кран отбора воздуха находится на правом переднем воздушном баллоне.

Компрессор — поршневого типа, ненрямоточный, двух цилиндровый, одноступенчатого сжатия. Поршни алюминиевые, с плавающими пальцами; от осевого перемещения пальцы в бобышках поршня фиксируются стопорными кольцами. Воздух из воздушного фильтра двигателя поступает в цилиндры компрессора через пластинчатые впускные клапаны 21 (рис. 74). Сжатый поршнями воздух вытесняется в пневматическую систему через расположенные в головке цилиндров пластинчатые нагнетательные клапаны 13. Головка охлаждается жидкостью, подводимой из системы охлаждения двигателя.

Компрессор ЗИЛ

Рис. 74. Компрессор:

1 — передний подшипник; 2 — передняя крышка; 3 — шкив; 4 — сальник коленчатого вала; 5 — картер; 6 — блок цилиндров; 7 — шатун; 8 — поршень с кольцами: 9 — поршневой палец со стопорными кольцами; 10 — головка блока; 11 — пробка нагнетательного клапана; 12 — пружина; 13 — нагнетательный клапан; 14 — седло нагнетательного клапана; 15 —задний подшипник; 16 — пружина уплотнителя; 17 — задняя крышка картера; 18 —уплотнитель; 19 — коленчатый вал; 20 — крышка; 21 — впускной клапан; 22 — направляющая впускного клапана; 23 — шток впускного клапана; 24 — направляющая пружина коромысла; 25 — коромысло; 26 — плунжер; 27 — уплотнительное кольцо; 28 — гнездо штока впускного клапана; 29 — пружина впускного клапана

Подача воздуха в пневматическую систему отключается компрессором следующим образом. При достижении давления воздуха в пневматической системе 0,73 … 0,80 МПа (7,3 … 8,0 кгс/см2) регулятор давления подает сжатый воздух по каналу в блоке цилиндров под плунжеры 26 разгрузочного устройства. Они, поднимаясь, открывают впускные клапаны 21 двух цилиндров, прекращая подачу воздуха в пневматическую систему, так как воздух получает возможность свободно переходить из цилиндра в цилиндр.

Когда давление воздуха в пневмосистеме снизится до 0,6 … 0,64 МПа (6 … 6,4 кгс/см2), регулятор прекращает подачу сжатого воздуха под плунжеры разгрузочного устройства. Воздух из-под плунжеров выходит в атмосферу; плунжеры под действием пружины коромысла опускаются, освобождая впускные клапаны, и компрессор вновь начинает нагнетать воздух в пневматическую систему.

Масло к трущимся поверхностям деталей компрессора поступает по трубке из масляной магистрали двигателя к задней крышке картера компрессора и через уплотнитель по каналам коленчатого вала к шатунным подшипникам. Коренные шариковые подшипники, поршневые пальцы и стенки цилиндров смазываются разбрызгиванием.

Необходимо проверять затяжку гаек, крепление компрессора на головке двигателя, крепление шкива, натяжение приводного ремня, затяжку гаек шпилек, крепящих головку, и других крепежных деталей.

Гайки шпилек, крепящих головку, следует затягивать равномерно, в два приема. Окончательный момент затяжки должен быть в пределах 12 … 17 Н*м (1,2 … 1,7 кгс*м). Через 80 … 100 тыс. км пробега при сезонном обслуживании (весной) надо снимать головку компрессора для очистки поршней, клапанов, седел, плунжеров, воздушных каналов, а также для проверки работы и герметичности клапанов и плунжеров разгрузочного устройства.

Клапаны, не обеспечивающие герметичность, необходимо притереть к седлам, а сильно изношенные или поврежденные заменить новыми. Новые клапаны также следует притереть к седлам до получения непрерывного кольцевого контакта при проверке «на краску». Необходимо проверить состояние уплотнительных колец плунжеров 26 разгрузочного устройства и при необходимости заменить кольца. При этом надо соблюдать следующий порядок:

1. Пустить двигатель и довести давление в пневматической системе до срабатывания регулятора давления.

2. Остановить двигатель.

3. Снять резиновый шланг, соединяющий воздушный фильтр двигателя с компрессором. При нарушении герметичности разгрузочного устройства в патрубке подвода воздуха к компрессору прослушивается характерный шум пропускаемого воздуха, а по манометру пневмосистемы отмечается некоторое падение давления.

4. Снизить давление воздуха в пневматической системе до нижнего предела регулирования, при этом плунжеры должны быть опущены.

5. Снять патрубок подвода воздуха, вынуть пружину и коромысло. Затем поднять гнездо штока и снять его вместе со штоком, после чего извлечь плунжер из гнезда крючком из проволоки, введя его в отверстие диаметром 2,5 мм в торце плунжера или подведя сжатый воздух в горизонтальный канал разгрузочного устройства блока цилиндров.

6. Заменить изношенные уплотнительные резиновые кольца на плунжерах. Перед установкой плунжеры с уплотнительными кольцами следует смазать маслом, применяемым для двигателя.

Признаками неисправности компрессора являются появление шума и стука, повышенного количества масла в конденсате, сливаемом из воздушных баллонов. Повышенное содержание масла в конденсате обычно является следствием изнашивания поршневых колец, нарушения масляного уплотнения коленчатого вала, изнашивания подшипников нижних головок шатунов или засмоления трубки слива масла из компрессора. Ремень привода компрессора должен быть натянут так, чтобы при приложении усилия 40 Н (4 кгс) прогиб участка ремня, расположенного между шкивами компрессора и вентилятора, был равен 5 … 8 мм.

Натяжение ремня привода компрессора регулируют поворотом компрессора вокруг нижней шпильки. Для этого надо ослабить три гайки крепления компрессора к головке блока и оттянуть компрессор, обеспечив необходимое натяжение, затем затянуть гайки.

Предохранительный клапан ЗИЛ

Предохранительный клапан (рис. 76) предназначен для предохранения пневмосистемы от повышения давления в случае выхода из строя регулятора давления. Клапан установлен на переднем правом воздушном баллоне и отрегулирован так, что открывается он по достижении в пневматической системе давления воздуха 1 … 1,05 МПа (10 … 10,5 кгс/см2). Клапан регулируют на заданное давление винтом 6, который стопорится контргайкой 5. Следует проверять исправность работы предохранительного клапана пневматической системы привода тормозов. Для этого нужно потянуть за стержень клапана — клапан должен выпускать воздух. Затем надо отпустить стержень; если в этом случае прекратится выпуск воздуха, то клапан работает нормально.

Предохранительный клапан ЗИЛ

Рис. 76. Предохранительный клапан:

1 — седло; 2 — корпус; 3 — шарик; 4 — пружина; 5 — контргайка; 6 — регулировочный винт; 7 — стержень

Регулятор давления ЗИЛ

Регулятор давления (рис. 75) установлен на блоке цилиндров компрессора. Для повышения надежности работы регулятор давления снабжен двумя фильтрами: один фильтр 8 установлен в месте поступления воздуха из пневматической системы, другой сетчатый фильтр 7 — в месте входа воздуха в регулятор из разгрузочного устройства компрессора.

Регулятор давления автоматически поддерживает необходимое давление сжатого воздуха в системе, впуская воздух в разгрузочное устройство компрессора или выпуская воздух из него.

По достижении в пневмосистеме давления 0,73 … 0,80 МПа (7,3 … 8,0 кгс/см2) регулятор отключает подачу воздуха компрессором, а при снижении давления до 0,6 … 0,64 МПа (6 … 6,4 кгс/см2) вновь включает компрессор. Если давление в пневмосистеме не поддерживается в указанных пределах, определить неисправность и устранить ее. Причиной изменения пределов давления в пневмосистеме может быть неисправность регулятора давления или износ уплотнительных колец плунжеров разгрузочного устройства. Поэтому необходимо предварительно проверить герметичность плунжеров разгрузочного устройства. Если и после устранения негерметичности плунжеров давление не будет соответствовать норме, следует разобрать регулятор, промыть детали в бензине или керосине и просушить. Вскрывать и регулировать регулятор давления разрешается только квалифицированным работникам. Регулятор давления рекомендуется проверять на специальном стенде.

Повреждение поверхности шариков и их гнезд недопустимо. Регулятор регулируют в такой последовательности.

1. Вращая регулировочный колпак 4, добиваются, чтобы компрессор включался в работу при давлении 0,6 … 0,64 МПа (6 … 6,4 кгс/см2). При завинчивании колпака давление повышается, при отвинчивании — снижается. Колпак закрепляют контргайкой 16.

2. Изменяя число прокладок 15, регулируют давление в пределах 0,73 … 0,80 МПа (7,3 … 8,0 кгс/см2), при котором компрессор отключается. С увеличением числа прокладок давление снижается, с уменьшением — повышается.

Рис. 75. Регулятор давления:

1 — кожух; 2 — пружина регулятора; 3 — упорный шарик; 4 — регулировочный колпак; б — шток клапана; 6 — седло впускного клапана; 7 — сетчатый фильтр; 8 — фильтр; 9 — уплотнительное кольцо; 10 — корпус; 11 — пробка фильтра; 12 — пружина клапана; 13 — впускной клапан; 14 — выпускной клапан; 15 — регулировочная прокладка; 16 — контргайка регулировочного колпака

Тормозные камеры ЗИЛ

Тормозные камеры, показанные на рис. 78, предназначены для приведения в действие тормозных механизмов колес при включении рабочей тормозной системы. Мембрана зажата между корпусом камеры и крышкой с помощью стяжного хомута, состоящего из двух полуколец. Камера крепится двумя гайками. Шток камеры заканчивается резьбовой вилкой, которая соединяется с регулировочным рычагом пальцем. Подмембранная полость соединена с атмосферой через дренажные отверстия в корпусе камеры.

Рис. 78. Тормозная камера:

1 — Собышка; 2 — крышка: 3 — мембрана; 4 — опорный диск; 5 — пружина; 6 — хомут; 7 — шток; 8 — корпус; 9 — контргайка; 10 — вилка; 11 — фланец; 12 — болт

При торможении, т. е. при подаче сжатого воздуха через бобышку в полость крышки, мембрана, прогибаясь, воздействует на диск, который перемещает шток тормозной камеры. Регулировочный рычаг поворачивается вместе с валом разжимного кулака. Кулак прижимает колодки к тормозному барабану с силой, пропорциональной давлению поданного в камеру сжатого воздуха.

Обслуживание тормозных камер заключается в проверке крепления камер к кронштейнам и проверке их герметичности. Для проверки герметичности нужно, нажав на тормозную педаль, наполнить камеры сжатым воздухом, покрыть мыльной эмульсией стягивающий хомут, дренажные отверстия в корпусе и место присоединения шланга к камере.

Негерметичность, выявленная в зоне хомута или дренажных отверстий корпуса камеры, устраняется подтяжкой болтов хомута, а негерметичность в зоне бобышки — подтягиванием штуцера подводящего шланга или трубки.

При проверке пневмопривода перед выездом необходимо убедиться, что давление в системе не ниже 0,45 МПа (4,5 кгс/см2). Во время движения давление в пневмосистеме тормозов должно быть в пределах 0,6 … 0,80 МПа (6 … 8,0 кгс/см2). Можно допускать только кратковременное снижение давления при частых повторных торможениях.

Во избежание полного расхода воздуха при частых торможениях запрещается останавливать двигатель на длинных спусках.

Увеличение давления свыше 0,80 МПа (8,0 кгс/см2) указывает на неисправность регулятора давления или разгрузочного устройства; повышение давления более 1,05 МПа (10,5 кгс/см2) указывает, кроме того, на неисправность предохранительного клапана. В этом случае необходимо немедленно устранить неисправности.

При резком полном нажатии на педаль тормоза (при неработающем двигателе) давление в воздушных баллонах (верхняя шкала манометра) должно несколько снизиться, а давление в тормозных камерах (нижняя шкала манометра) должно стать равным давлению в ресиверах. После этого не должно быть заметного колебания стрелок манометра, пока педаль тормоза остается нажатой.

Дальнейшее понижение давления в этом случае свидетельствует о нарушении герметичности пневмосистемы.

После того как педаль тормоза резко отпущена, время снижения давления в тормозных камерах (по нижней шкале манометра) не должно превышать 2 с.

При свободном положении тормозной педали и неработающем двигателе снижение давления в системе тормозов из-за негерметичности системы (по показанию верхней стрелки манометра) не должно превышать 0,05 МПа (0,5 кгс/см2) в течение 30 мин. Быстрое снижение давления при остановке двигателя указывает на повышенную утечку воздуха из системы. Место сильной утечки воздуха можно определить на слух. Место незначительной утечки может быть определено при помощи мыльной эмульсии, которой следует смочить места возможной утечки. Утечку воздуха через соединения устраняют, подтягивая соединительную арматуру.

Следует проверить, нет ли касания шлангов передних тормозных камер о колеса, повернутые до отказа влево и вправо. В случае касания шланга следует ослабить его гайку и, поворачивая наконечник шланга на небольшой угол, устранить касание, после чего затянуть гайку.

Для обеспечения нормальной работы пневмопривода тормозов необходимо периодически открывать краны в воздушных баллонах и сливать конденсат.

Надо помнить, что слить конденсат из воздушных баллонов можно только при наличии в них сжатого воздуха. Не следует допускать скопления большого количества конденсата в воздушных баллонах.

Количество конденсата зависит от состояния компрессора и влажности окружающего воздуха, поэтому при влажной погоде необходимо сливать конденсат после окончания работы. Наличие большого количества масла в конденсате указывает на неисправность компрессора.

Зимой надо особенно тщательно следить за сливом конденсата из воздушных баллонов во избежание замерзания его в системе трубопроводов пневмопривода тормозов. В случае замерзания конденсата нельзя подогревать тормозной кран, трубопроводы, воздушные баллоны открытым пламенем (факелом, паяльной лампой и др.).

Регулировку пневмопривода следует проводить при закрытом кране управления давлением ситемы регулирования давления воздуха в шинах. Необходимо проверять регулировку пневмопривода тормозов и ход штоков тормозных камер. Давление воздуха в пневмоприводе рабочих тормозов надо регулировать в следующем порядке.

Вам будет интересно  Бьет руль при торможении на большой скорости, причины

При работе двигателя в режиме холостого хода необходимо поднять давление воздуха в пневматической системе до верхнего предела регулирования по показанию верхней шкалы манометра на щитке приборов; при этом показание нижней шкалы (давление воздуха в тормозных камерах) должно быть равно нулю. Затем следует нажать до отказа на педаль тормоза. При приложении к концу педали усилия 200 … 300 Н (20 … 30 кгс) давление воздуха в тормозных камерах должно стать равным давлению воздуха в воздушных баллонах, а показания манометров должны быть одинаковыми. При этом педаль не должна доходить до иола на 10 … 30 мм. Если педаль упирается в пол или если зазор не соответствует указанному, необходимо выполнить следующее: отрегулировать положение педали тормоза, изменяя длину тяги, соединяющей рычаг тормозного крана с промежуточным рычагом привода, при помощи регулировочной вилки, навернутой на резьбовой конец тяги.

Если привод тормозного крана отрегулирован правильно, то при наличии сжатого воздуха в воздушных баллонах свободный ход конца педали тормоза должен быть равен 40 … 60 мм. Кроме того, необходимо проверить и отрегулировать давление воздуха в соединительной магистрали пневмовывода для управления тормозами прицепа. Для этого надо присоединить манометр к соединительной головке.

В отторможенном состоянии манометр должен показывать давление 0,52 … 0,57 МПа (5,2 … 5,7 кгс/см2). Если показание манометра не соответствует указанному, необходимо отрегулировать секцию крана, управляющую тормозами прицепа.

Регулировку следует проводить в таком порядке: снять корпус 24 (см. рис. 77) рычагов тормозного крана, ослабить контргайку 22 и, вращая направляющую 6 штока, установить давление воздуха, подаваемого в магистраль прицепа, в пределах, указанных выше. Затем надо завернуть контргайку и поставить на место корпус рычагов (обязательно поставить на место уплотнительную прокладку корпуса рычагов).

При плавном нажатии на педаль рабочего тормоза давление по показаниям манометра, подключенного к соединительной головке, должно плавно уменьшаться и дойти до нуля при полном нажатии на педаль. Промежуточным положениям педали должны соответствовать промежуточные показания манометра.

Устройство системы торможения автомобиля

В состав входят определенные механизмы и соединяющиеся с ними приводы. Весь принцип работы тормозной системы основан на их четком взаимодействии друг с другом.

Сам механизм торможения нужен для создания усилий, необходимых для остановки или снижения скорости транспорта. Элемент устанавливается на колесной ступице и работает за счет силы трения. Механизм торможения бывает: дисковый или барабанный. Первый вариант используется сейчас намного чаще.

В состав тормозной системы включены статичные и вращающиеся механизмы. Статичными являются барабаны, а вращаются колодки со специальными накладками. Дисковый вариант имеет вращающийся диск торможения и неподвижный элемент суппорта с колодками. Управление этими механизмами осуществляется специальными приводами.

В тормозной системе гидравлика не является фактически единственной системой. Так, для стоянки используются тяговые рычаги и металлические тросы. Посредством тросов соединяются колодки задних колес с рычагом в кабине. Кроме гидравлики и механики, используются также электрические приводы, которые управляют процессом торможения и остановки автомобиля.

Гидравлическая система может дополняться другими средствами. Это защита от блокировки колес, средства для курсовой устойчивости, усиление экстренного торможения, также система помощи экстренного снижения скорости.

Кроме гидравлики используются пневматические и электрические системы. Есть комбинированный тип тормозов. Это пневмогидравлический, такой применялся ранее на грузовых автомобилях ЗИЛ «Бычок» (на данный момент эти машины не производятся).

Общее устройство пневматического привода тормозов

На рис. 1 изображена схема пневматического привода тормозов автомобиля ЗИЛ-433100. Для детального ознакомления со схемой необходимо щелкнуть мышкой по рисунку 1. Увеличенное изображение схемы с пояснениями к номерам позиций откроется в отдельном окне браузера.

Основными элементами пневматического привода являются компрессор 1, ресиверы (воздушные баллоны) 9, 10, 11, 22, 23, хранящие запас сжатого воздуха, кран управления 18, магистрали и исполнительные элементы, воздействующие на разжимные устройства тормозных механизмов. В качестве таких исполнительных устройств обычно используют тормозные камеры 2, 29 диафрагменного типа.

Кроме основных элементов, пневматический привод современного автотранспортного средства включает различные дополнительные приборы и устройства, обеспечивающие его надежное функционирование, как в одиночном автомобиле, так и в составе автопоезда.

Все приборы пневматического тормозного привода делятся на следующие группы: питающие, приборы управления, регулирующие, исполнительные.

 Питающие приборы подготавливают энергоноситель (сжатый воздух) к работе и распределяют его по контурам. Сюда относятся компрессор с регулятором давления воздуха, устройство, предохраняющее конденсат от замерзания, трубопроводы и различные соединительные элементы, в том числе и для присоединения пневмопривода тягача к пневмоприводу прицепа (полуприцепа).

К приборам управления относятся тормозные краны всех систем (рабочей, стояночной, запасной, вспомогательной), а также краны и клапаны управления тормозными системами прицепа или полуприцепа.

К регулирующим приборам относятся регуляторы тормозных сил, ускорительные клапаны, клапаны быстрого растормаживания.

К исполнительным приборам относятся тормозные камеры и пружинные энергоаккумуляторы.

Принцип действия пневматического привода тормозных механизмов достаточно прост – при торможении автомобиля (нажатие на тормозную педаль) кран соединяет ресиверы с магистралями, устанавливая в них давление воздуха, пропорционально силе, приложенной водителем к тормозной педали. При снятии усилия с тормозной педали кран отсоединяет магистрали от ресиверов и соединяет их с окружающей средой, выпуская сжатый воздух из системы. Подобно гидравлическому, пневматический привод разделяется на контуры, причем каждый отдельный контур оснащается своим ресивером с запасом сжатого воздуха и управляется отдельной секцией крана. Это необходимо для повышения надежности привода и сохранения управляемости автомобилем в случае разгерметизации или отказа одного из контуров.

Одноконтурный пневматический привод прост по конструкции, но современные требования к безопасности движения исключают его использование на автомобилях из-за низкой надежности. Поэтому на современных автомобилях применяются многоконтурные приводы, и помимо двух обязательных контуров рабочей тормозной системы применяют несколько независимых контуров других тормозных систем. Так, пневматический тормозной привод автомобиля КамАЗ-4310 имеет шесть независимых контуров:

· контур питания потребителей сжатым воздухом;

· контур привода тормозных механизмов передних колес;

· контур привода тормозных механизмов задних колес;

· контур привода стояночной тормозной системы;

· контур привода вспомогательной тормозной системы;

· контур аварийного растормаживания стояночной тормозной системы.

Кроме того, имеется целый ряд приборов, обеспечивающих работу привода тормозных механизмов прицепа и осуществляющих контроль над состоянием элементов тормозного привода. Аналогичной тормозной системой осуществляются современные модели автомобилей ЗиЛ, МАЗ, КрАЗ и др.

Особенно удобен пневматический привод для использования на автопоездах. Исполнительные механизмы привода тормозной системы прицепа (или полуприцепа) питаются от установленных на них отдельных ресиверов посредством дополнительного крана, который называется воздухораспределителем.

Соединение тормозных систем тягача и прицепа может быть однопроводным или двухпроводным. При однопроводном приводе прицеп соединен с тягачом с помощью одной магистрали, через которую осуществляется как наполнение ресиверов прицепа сжатым воздухом, так и передача на прицеп команд на торможение с заданной водителем интенсивностью. Преимуществом однопроводного тормозного привода прицепных автотранспортных средств является его простота, а также то, что при отрыве прицепа от тягача он автоматически, без применения дополнительных устройств, затормаживает прицеп вследствие того, что давление в разорвавшейся соединительной магистрали падает до нуля.

В двухпроводном приводе посредством одной магистрали, связывающей тягач с прицепом (полуприцепом), постоянно пополняется запас сжатого воздуха в ресиверах прицепа. Эта магистраль называется питающей. Другая магистраль (управляющая) управляет воздухораспределителем прицепа. Давление воздуха в управляющей магистрали изменяется пропорционально изменению давления в тормозных магистралях тягача.

Двухпроводный привод обладает рядом преимуществ по сравнению с однопроводным:

· обеспечение лучшего согласования торможения тягача и прицепа благодаря одинаковому давлению сжатого воздуха в ресиверах тягача и прицепа:

· повышение эффективности работы тормозов прицепа и уменьшение времени их срабатывания;

· при частых торможениях тормозная система прицепа с двухпроводным приводом эффективно пополняет запас сжатого воздуха в ресивере, поддерживая постоянство рабочего давления.

Автомобильные фирмы США, а также большинства европейских стран применяют на прицепах двухпроводный привод тормозных систем. В Германии получил распространение комбинированный привод (одно- и двухпроводный), а отдельные фирмы Великобритании и Франции используют трехпроводной привод управления тормозами прицепа. При этом третий контур используется в качестве запасного контура тормозной системы прицепа.

Клапаны управления тормозными системами прицепов с двухпроводным приводом и с однопроводным приводом являются аппаратами управления тормозными системами прицепов. Они устанавливаются на автомобилях-тягачах.

Принцип работы

Принцип работы тормозной системы заключается в следующем:

  • Нажатием педали водитель формирует некоторое усилие, которое передается на вакуумный узел.
  • Сила нажатия на педаль увеличивается в вакуумном узле и передается уже на главный цилиндр.
  • Поршень цилиндра воздействует на гидравлику и толкает ее по контуру трубопроводов. Давление в контуре начинает расти, жидкость давит на поршни тормозных цилиндров. Те, в свою очередь, прижимают колодки к дискам.
  • Увеличение силы нажатия на педаль повышает давление гидравлики. За счет увеличения давления начинают срабатывать механизмы торможения. Чем сильнее давление жидкости, тем выше эффективность работы системы.
  • Ослабление нажатия на педаль возвращает все механизмы в начальное положение за счет специальной пружины.

Из чего состоит пневматическая тормозная система?

Конструкция пневматического тормозного привода примерно одинаковая для всех видов автомобилей. Отличаться могут отдельные узлы и элементы.


Общий вид пневматической тормозной системы: 1 — двухсекционный тормозной кран, 2, 6 — тормозные камеры (силовые цилиндры), 3 — предохранительный клапан, 4 — регулятор давления, 5 — компрессор, 7 — кран отбора воздуха, 8 и 9 — разобщительный кран с соединительной головкой, 10 — ресиверы (воздушные баллоны), 11, 12 — тормозные барабаны в сборе.

Компрессор. Нагнетает воздух в ресиверах (баллонах). Компрессор устанавливают в переднюю часть автомобиля возле блока двигателя. Агрегат работает от клиновидного ремня, который соединяет шкив компрессора и шкив радиаторного вентилятора.

Ресиверы или баллоны. В ресиверах хранится запас сжатого воздуха. Пневматические тормоза оборудованы двумя ресиверами. Первый баллон, который в народе называют “мокрым”, оборудован предохранительным клапаном и краном для слива конденсата. На втором ресивере есть только кран для слива конденсата. Предохранительный клапан, который контролирует давление во втором баллоне, установлен дальше по магистрали в тормозном кране.

Предохранительный клапан. Защищает систему от перегрузки и сбрасывает избыточное давление. Количество защитных клапанов зависит от типа конструкции и количество контуров магистралей.

Регулятор давления. Контролирует и поддерживает оптимальное давление в системе, а при необходимости впускает или выпускает воздух в устройство разгрузки компрессора.

Тормозной кран. Комбинированный поршневой узел, который распределяет потоки сжатого воздуха по системе, последовательно заполняет энергоносителем все контуры пневмосистемы и тормозные камеры. Тормозной кран — связующий узел между ресиверами и тормозными цилиндрами колес. Количество тормозных кранов в пневматической системе зависит от количество контуров.

Осушитель воздуха. Выделяет пары воды и другие примеси (например, пары масла) из всасываемого воздуха. В современных моделях автомобилей осушитель совмещен с регулятором давления, поэтому последний как отдельный узел отсутствует.

Тормозные узлы с силовыми цилиндрами (тормозными камерами). Установлены на колесах автомобиля, отвечают за остановку транспортного средства. Каждый узел оборудован тормозным цилиндром, в который по трубопроводу под давлением поступает воздух и который прижимает тормозные колодки к барабану.

Разобщительный кран. Элемент встречается только в тягачах с прицепами. Через кран пневматическую тормозную систему тягача соединяют с тормозной магистралью прицепа. Кран объединяет две системы, увеличивает устойчивость и управляемость автомобиля, уменьшает риск заноса прицепа при торможении.

Пневмоусилители. Агрегаты увеличивают показатели давления до необходимого уровня и уменьшают нагрузку на компрессор. Количество усилителей отличается в различных моделях автомобилей.

Трубопровод. Система труб и шлангов соединяет все узлы и элементы. Количество ответвлений трубопровода зависит от количества контуров пневматической тормозной системы.

Педаль тормоза. Элемент передает усилие на поршни тормозного крана и открывает каналы для сжатого воздуха от ресиверов на тормозные камеры колес.

Рычаг ручного тормоза.

Измерительные приборы и датчики. Контролирующие элементы, по которым водитель следит за состоянием и работоспособностью тормозной системы. К ним относятся датчики, которые находятся в ресиверах и тормозных камерах, и двухстрелочный манометр. Одна стрелка манометра показывает давление в баллонах, а вторая — в тормозных камерах. В старых моделях автомобилей манометров было два и каждый отвечал за свой узел.

Тормозная система автомобиля: устройство, назначение и принцип действия тормозов

Одной из самых важных систем в автомобиле, является система торможения. При ее неисправности автомобиль становится смертельно опасным как для водителя, едущих с ним пассажиров, так и для всех остальных участников дорожного движения, включая вездесущих пешеходов. Поэтому исправность тормозной системы автомобиля — залог сохранности не только здоровья, но и жизни.

Тормозная система автомобиля предназначена для замедления или осуществления полной остановки транспортного средства. В тормозную систему входит ряд составных частей – это тормозные колодки, шланги, тормозные цилиндры, вакуумный усилитель, барабаны или диски.

Все современные автомобили оборудуются фрикционными тормозами. В основе работоспособности фрикционных тормозов используется сила трения неподвижных деталей механизма о подвижные.

Тормозная система разделяется на два вида: рабочая, которая предназначена для снижения скорости и остановки автомобиля и стояночная, которая используется для того, чтобы удержать автомобиль на неровной поверхности (ручник, но в современных автомобилях бывает и автоматический стояночный тормоз). Согласно требований, которые предъявляются странами, входящими в ЕЭС, рабочей и стояночной тормозной системами должен быть оборудован каждый производимый автомобиль.

Обеспечить безопасную эксплуатацию транспортных средств без высоко-эффективной и крайне надежной тормозной системы не представляется возможным. Перед инженерами, работающими в автомобилестроении, постоянно стоит задача совершенствования тормозных систем. Многие из этих усовершенствований, к сожалению, предлагаются только в дополнительных опциях к автомобилю или только в дорогих комплектациях, за которые приходится платить больше. Но стоит ли экономить на собственной безопасности? Это решает каждый автолюбитель самостоятельно.

Принцип действия тормозной системы

Схема тормозной системы

Схема подготовлена по материалам automn.ru и systemsauto.ru

  1. трубопровод контура «левый передний-правый задний тормозные механизмы»
  2. сигнальное устройство
  3. трубопровод контура «правый передний — левый задний тормозные механизмы»
  4. бачок главного тормозного цилиндра
  5. главный тормозной цилиндр
  6. вакуумный усилитель тормозов
  7. педаль тормоза
  8. регулятор давления
  9. трос стояночного тормоза
  10. тормозной механизм заднего колеса
  11. регулировочный наконечник стояночного тормоза
  12. рычаг привода стояночного тормоза
  13. тормозной механизм переднего колеса

При нажатии на педаль тормоза в тормозной системе создается давление, которое усиливается вакуумным усилителем и передается через тормозные шланги на неподвижные части тормозного механизма — колодки.

Тем самым тормозные колодки приводятся в движение и либо зажимают тормозной диск (в дисковых тормозах), либо упираются в стенки барабана (в тормозах барабанного типа), что обеспечивает торможение.

Дисковые тормоза хотя и более дорогие, но более надежные, поэтому барабанные тормоза используются лишь на задних колесах бюджетных автомобилей.

Схема дисковых тормозов

Дисковый тормозной механизм состоит из тормозного диска, который закреплен на колесе и вращается вместе с ним, двух неподвижных колодок, которые установлены внутри суппорта по обе стороны от тормозного диска.

Суппорт крепится на кронштейне. На суппорте, в его пазах также крепятся рабочие цилиндры, которые во время торможения прижимают тормозные колодки к диску.

Тормозные колодки после отпускания педали тормоза возвращаются в исходное положение пружинными элементами.

Тормозной диск в процессе торможения, под воздействием сил трения сильно нагревается. Охлаждение тормозных дисков происходит за счет конвективного омовения потоком воздуха. Для улучшения отвода накапливаемого диском тепла в нем делаются специальные отверстия и в этом случае диск является вентилируемым. Для еще большего повышения эффективности процесса торможения и нивелирования последствий перегрева диска на спортивных и скоростных автомобилях устанавливают тормозные диски, изготовленные с применением специальных керамических материалов.

Тормозной привод служит для обеспечения управления всеми составляющими тормозного механизма. В современных тормозных системах применяются такие типы тормозных приводов: механический, пневматический, гидравлический, электрический и комбинированный.

Механический привод применяется в стояночной тормозной системе (ручник). Механический привод — это система тяг, тросов и рычагов, которые служат для соединения рычага стояночного тормоза с тормозным механизмом задних колес автомобиля.

Существует также система механического привода стояночного тормоза, приводимая в действие с помощью ножной педали.

Гидравлический привод является наиболее распространенным типом привода в рабочей системе тормозов. Конструкция гидравлического привода включает: педаль тормоза, главный тормозной цилиндр, вакуумный усилитель тормозов, рабочие цилиндры, шланги и трубопроводы.

Принцип работы гидравлического привода тормозов описан чуть выше.

Для обеспечения надежности тормозной системы работа гидравлического привода организуется по двум (как правило) независимым контурам. При поломке одного контура, его функции берет на себя другой контур. Рабочие контуры могут дублировать функции друг-друга либо выполнять часть какую-то часть функций второго контура. Возможно также и выполнение каждым контуром строго своих функций. Наиболее распространенной является диагональная схема работы контуров.

Пневматический привод используется преимущественно в тормозной системе грузовых автомобилей.

Комбинированный тормозной привод, как следует из названия, представляет собой сочетание (комбинацию) двух видов привода (электропневматический, например).

Далее скажем пару слов о дополнительных системах, которые делают автомобиль более безопасным.

Анти-блокировочная система ABS, предназначается для предотвращения блокирования колес автомобиля во время очень сильного нажатия на педаль тормоза, что позволяет избежать движения юзом, и сохранить контроль над автомобилем. В состав системы ABS (Antilock Brake System) входят три элемента – это датчик измерения скорости, который устанавливается на каждом колесе, модулятор давления тормозной жидкости и блок управления системой ABS.

Система TCS создана на основе системы ABS и предназначена для предотвращения пробуксовывания колес во время слишком резкого старта или на скользкой дороге. Система (Traction Control System) существует и под названиями: ASR, ASC, ETS. Она отличается от системы ABS только наличием модифицированного блока управления.

ESP. Еще одной полезной системой, которая может устанавливаться на автомобиле, является система электронной стабилизации колес ESP. Эта система работает в повороте, причем его угол и скорость не имеют значения, при возникновении заноса задней оси автомобиля, ESP (Electronic Stability Program) обеспечивает подтормаживание переднего наружного колеса. В такой ситуации образуется стабилизирующий момент, возникающий между колесами автомобиля, который возвращает движущийся автомобиль на безопасную траекторию.

Видео: принцип работы тормозной системы

Пневматическая тормозная система: устройство и работа

Пневматический тормозной привод — вид конструкции тормозной системы, которая использует в качестве энергоносителя сжатый воздух. Пневматические тормоза используют в разных видах транспорта:

  • пассажирские автобусы;
  • грузовые коммерческие автомобили;
  • специализированная техника — грейдеры, бульдозеры, погрузчики, автокраны, другие крупно- и малогабаритные спецсредства;
  • железнодорожный транспорт.

Пневматическая тормозная система: устройство и работа

Тягач DAF XF105 — пример грузовика с пневматическими тормозами

Нас интересует именно автомобильный вариант пневматического тормозного привода. В статье мы расскажем о:

  • видах пневматических тормозных систем;
  • конструкции и принципе работы пневмопривода;
  • основных преимуществах и недостатках пневматики в сравнении с гидравлическими тормозами;
  • неисправностях, которые возникают в работе пневмотормозов, признаках и последствиях поломок, а также дадим полезные советы как продлить срок службы тормозной системы.

Классификация пневматических тормозных систем

Пневматический тормозной привод используют отдельно или в комплексе с другими системами (примеры — комбинированные тормозные системы электропневматического или пневмогидравлического типа).

Пневматические тормозные системы также классифицируют по количеству рабочих контуров-магистралей. Встречаются 3 вида систем:

  • одноконтурные;
  • двухконтурные;
  • многоконтурные.

Одноконтурные системы. Особенность — магистрали на передние и задние колеса объединены в одну ветку, а интенсивность потока сжатого воздуха контролирует один тормозной кран. Одноконтурная модель пневматической тормозной системы — устаревший тип конструкции, который в большинстве случаев встречается только на старых моделях грузовых автомобилей и автобусов.

Двухконтурные системы. Отличия понятны из названия — магистрали тормозной системы автомобиля разделены на две ветки. Одна ветка передает сжатый воздух на передние колеса, вторая — на задние.

Поток энергоносителя контролируют два тормозных крана — по одному на каждый контур магистралей. Двухконтурная конструкция надежнее, чем одноконтурная.

Если вышла из строя ветка задней оси, передние тормозные узлы продолжают функционировать и наоборот.

Многоконтурные системы. Особенность — сложная, но эффективная и надежная конструкция. Многоконтурные пневматические системы встречаются в крупных грузовых автомобилях и состоят из трех и больше контуров. Многоконтурная тормозная пневмосистема увеличивает устойчивость, облегчает управление и остановку грузовика.

Конструкция пневматической тормозной системы

Конструкция пневматического тормозного привода примерно одинаковая для всех видов автомобилей. Отличаться могут отдельные узлы и элементы.

Пневматическая тормозная система: устройство и работа

Общий вид пневматической тормозной системы: 1 — двухсекционный тормозной кран, 2, 6 — тормозные камеры (силовые цилиндры), 3 — предохранительный клапан, 4 — регулятор давления, 5 — компрессор, 7 — кран отбора воздуха, 8 и 9 — разобщительный кран с соединительной головкой, 10 — ресиверы (воздушные баллоны), 11, 12 — тормозные барабаны в сборе.

Компрессор. Нагнетает воздух в ресиверах (баллонах). Компрессор устанавливают в переднюю часть автомобиля возле блока двигателя. Агрегат работает от клиновидного ремня, который соединяет шкив компрессора и шкив радиаторного вентилятора.

Ресиверы или баллоны. В ресиверах хранится запас сжатого воздуха. Пневматические тормоза оборудованы двумя ресиверами.

Первый баллон, который в народе называют “мокрым”, оборудован предохранительным клапаном и краном для слива конденсата. На втором ресивере есть только кран для слива конденсата.

Предохранительный клапан, который контролирует давление во втором баллоне, установлен дальше по магистрали в тормозном кране.

Предохранительный клапан. Защищает систему от перегрузки и сбрасывает избыточное давление. Количество защитных клапанов зависит от типа конструкции и количество контуров магистралей.

Регулятор давления. Контролирует и поддерживает оптимальное давление в системе, а при необходимости впускает или выпускает воздух в устройство разгрузки компрессора.

Тормозной кран. Комбинированный поршневой узел, который распределяет потоки сжатого воздуха по системе, последовательно заполняет энергоносителем все контуры пневмосистемы и тормозные камеры. Тормозной кран — связующий узел между ресиверами и тормозными цилиндрами колес. Количество тормозных кранов в пневматической системе зависит от количество контуров.

Осушитель воздуха. Выделяет пары воды и другие примеси (например, пары масла) из всасываемого воздуха. В современных моделях автомобилей осушитель совмещен с регулятором давления, поэтому последний как отдельный узел отсутствует.

Тормозные узлы с силовыми цилиндрами (тормозными камерами). Установлены на колесах автомобиля, отвечают за остановку транспортного средства. Каждый узел оборудован тормозным цилиндром, в который по трубопроводу под давлением поступает воздух и который прижимает тормозные колодки к барабану.

Разобщительный кран. Элемент встречается только в тягачах с прицепами. Через кран пневматическую тормозную систему тягача соединяют с тормозной магистралью прицепа. Кран объединяет две системы, увеличивает устойчивость и управляемость автомобиля, уменьшает риск заноса прицепа при торможении.

Пневмоусилители. Агрегаты увеличивают показатели давления до необходимого уровня и уменьшают нагрузку на компрессор. Количество усилителей отличается в различных моделях автомобилей.

Трубопровод. Система труб и шлангов соединяет все узлы и элементы. Количество ответвлений трубопровода зависит от количества контуров пневматической тормозной системы.

Педаль тормоза. Элемент передает усилие на поршни тормозного крана и открывает каналы для сжатого воздуха от ресиверов на тормозные камеры колес.

Рычаг ручного тормоза.

Измерительные приборы и датчики. Контролирующие элементы, по которым водитель следит за состоянием и работоспособностью тормозной системы.

К ним относятся датчики, которые находятся в ресиверах и тормозных камерах, и двухстрелочный манометр. Одна стрелка манометра показывает давление в баллонах, а вторая — в тормозных камерах.

В старых моделях автомобилей манометров было два и каждый отвечал за свой узел.

Принцип работы и функционал пневматического тормозного привода

Главная и единственная функция любой тормозной системы — вовремя остановить автомобиль не зависимо от условий и внешних факторов. Неважно, нужно плавно остановить авто перед перекрестком или резко затормозить из-за неожиданно возникшей преграды — автомобиль должен остановится без ущерба для водителя, транспортного средства, других участников дорожного движения.

Рассмотрим основные этапы и процессы, которые происходят в пневматической тормозной системе.

Пневматическая тормозная система: устройство и работа

Пневмокомпрессор для автомобилей МАЗ с двигателем OM 906 LA

Компрессор тормозной системы — приводной агрегат, который работает только когда запущен двигатель. Через воздушный фильтр в компрессор поступает воздух, который агрегат через регулятор давления закачивает в ресиверы.

Регулятор давления, который расположен либо как отдельный узел, либо встроен в осушитель, контролирует и оптимизирует давление воздуха, а когда ресиверы заполнены полностью, обеспечивает холостой ход компрессора. Если регулятор давления не работает, его подменяет предохранительный клапан.

Ресиверы системы соединены последовательно. В нижней части первого баллона находится спускной кран, через который из энергоносителя выводится конденсат и пары масла. Второй баллон соединен с краном, который оборудован регулятором давления и предохранительным клапаном. Последние сбрасывают лишний воздух и нормализуют давление в системе, если оно превышает допустимое.

Тормозной кран контролирует и перенаправляет поток сжатого воздуха в камеры силовых цилиндров, которые находятся в тормозных узлах колес.

В одноконтурной системе за передние колеса автомобиля отвечает нижний цилиндр крана, а за задние колеса тягача и колеса прицепа (если есть) — верхний цилиндр.

Пневматические тормоза прицепа присоединяют к автомобилю через разобщительный кран и соединительную головку.

Когда водитель нажимает педаль тормоза, тормозной кран открывает доступ для сжатого воздуха, который из ресиверов поступает в тормозные камеры колес.

В цилиндрах увеличивается давление, разжимные кулаки прижимают колодки к тормозным барабанам колес и останавливают автомобиль.

Когда водитель отпускает педаль, клапаны тормозных камер колес выводя воздух и колодки возвращаются в исходное положение.

Пневматическая тормозная система: устройство и работа

Пневматический барабанный тормозной узел в сборе на автомобиле

Водитель может следить за состоянием пневматической тормозной системы по манометру, который показывают давление сжатого воздуха в ресиверах и тормозных камерах. Манометр соединен с датчиками давления, которые передают данные на приборную панель в кабину водителя.

Преимущества и недостатки пневматики

Пневматическая и гидравлические тормозные системы — это два аналоговых тормозных привода, каждый из которых обладает своими преимуществами и недостатками. Первый тип привода используют в основном в тяжелых автомобилях, а второй чаще встречается на транспортных средствах повседневного использования.

Чем пневматические тормоза лучше гидравлических:

  • когда водитель отпускает педаль тормоза, сжатый воздух не возвращается обратно в систему, а выходит через клапаны сброса в атмосферу;
  • пневматическая система экономичнее, так как использует сжатый воздух, который компрессор забирает из атмосферы;
  • воздух меньше изнашивает систему, чем жидкостный наполнитель;
  • сжатый воздух — нейтральная среда, поэтому вероятность того, что энергоноситель потеряет свойства, гораздо меньше. Гидравлические смеси для тормозных систем сильно отличаются друг от друга по составу, смешивать их нельзя, а вывести из строя систему может любая посторонняя примесь;
  • пневматическая тормозная система легче переносит температурные перепады как окружающей среды, так и внутри системы. Гидравлический энергоноситель может закипеть или замерзнуть от резкого скачка температуры, в результате тормоза ломаются;
  • пневматика меньше боится мелких утечек, так как компрессор работает все время и в случае утечки рабочего газа быстро восполнит недостачу.

Однако и у гидравлики есть свои преимущества:

  • гидротормоз срабатывает быстрее за счет того, что энергоноситель обладает высокой плотностью и не сжимается, как воздух;
  • у гидравлического привода конструкция значительно проще, чем у пневматической тормозной системы
  • гидравлический привод функционирует как отдельная система в отличие от пневматического, в котором работа компрессора зависит от работы двигателя;
  • несмотря на то, что пневматические тормоза срабатывают быстрее, КПД гидравлических тормозов выше за счет меньшей потери энергии при перемещении энергоносителя по трубопроводу.

Ну и самое главное отличие между гидравликой и пневматикой — цена на запчасти и агрегаты. Хотя тяжело сравнивать, например, стоимость тормозного суппорта легкового автомобиля и барабанный тормоз тяжелого тягача, как минимум из-за большой разницы в габаритах и конструкции.

Именно благодаря отличиям между двумя видами тормозных приводов каждый из типов занимает свою нишу и практически не конкурирует с аналогом.

Неисправности пневматической тормозной системы. Причины и признаки поломок. Как продлить срок службы тормозов

Основные неисправности пневматической тормозной системе:

  • тормоза автомобиля не реагируют на нажим педали или реагируют с большим опозданием. Причины — сжатый воздух выходит через трещину в трубопроводе или ресивере, вышел из строя компрессор. Неисправности возникают в результате резкого удара, который повредил пневмосистему, постепенного износа привода, разрыва приводного ремня, который запускает компрессор. Выход — обратиться на диагностику на станции техобслуживания;
  • увеличился тормозной путь автомобиля. Причины также могут быть разные. Например, разболталась педаль тормоза, износились тормозные колодки или барабаны, поврежден один из контуров магистрали. Неисправности возникают в результате естественного износа, резкого перепада давления или неправильной работы перепускных клапанов и тормозных кранов. Решение — посетите автосервис и пройдите диагностику пневмотормозов;
  • занос прицепа во время торможения. Проблема говорит о неисправности разобщительного клапана, который соединяет пневмосистему тягача и тормозные камеры прицепа. В результате, когда водитель тормозит, воздух поступает только в тормозные камеры, а прицеп продолжает движение. Выходит, что прицеп и тягач начинают двигаться навстречу друг другу, в результате чего прицеп как более длинный и менее устойчивый объект ведет в сторону. Чтобы устранить поломку, достаточно заменить разобщительный кран;
  • автомобиль ведет в сторону при торможении. Причина — тормоза работают несинхронно, колеса тормозят в разное время, и автомобиль может занести. Проблема возникает, когда неравномерно изнашиваются тормозные колодки и барабаны или одна из тормозных камер пропускает воздух.

Пневматическая тормозная система: устройство и работа

Своевременный ремонт — залог безопасности и комфорта

Чтобы не допустить неисправности, достаточно регулярно проверять состояние тормозной системы автомобиля, следить за показатели манометров и датчиков, вовремя проходить ТО, использовать качественные и подходящие по допускам запчасти, комплектующие и сменные узлы. Именно от отношения водителя к автомобилю зависит срок службы транспортного средства. Это правило, которые должен знать и соблюдать каждый водитель независимо от того, на чем ездит человек — на легковушке или тягаче с прицепом.

Вам будет интересно  Как работает тормозная система автомобиля

Пневматический привод тормозов автомобиля

Пневматический привод колесных тормозов состоит из компрессора 1, воздушного баллона 7, манометра 6, тормозного крана 21, приводимого в действие педалью 26, тормозных камер 11, регулятора давления 28, предохранительного клапана 5 и трубопроводов 4, 27 и 9 с гибкими шлангами 10.

Привод тормозов колес осуществляется непосредственно тормозными камерами с помощью сжатого воздуха, запас которого содержится в воздушных баллонах.

Тормозная камера 11 состоит из корпуса с крышкой, между которыми зажата гибкая резино-тканевая диафрагма 17. Диафрагма опирается на шайбу, закрепленную на штоке 13. Шайба вместе с диафрагмой отжимается в исходное левое положение пружинами 12.

Шток диафрагмы соединен с рычагом 16 разжимного кулака. Тормозная камера через отверстие в крышке камеры, гибкий шланг 10 и трубопровод 9 соединяется с тормозным краном.

Тормозной кран служит для управления тормозами. В корпусе тормозного крана установлена гибкая металлическая диафрагма 20.

Под диафрагмой размещается коромысло 19, посредством которого диафрагма воздействует своим штоком на впускной 25 и атмосферный 18 клапаны. Корпус крана закрыт крышкой, в которой установлен свободно толкатель 23, опирающийся через пружину 22 на диафрагму.

Рычаг 24 установлен на оси. Рычаг коротким концом через регулировочный болт может воздействовать на толкатель 23.

Пневматический привод тормозов работает следующим образом.

При нажатии на педаль 26 ножного тормоза рычаг 24 поворачивается вокруг оси и через регулировочный болт нажимает на толкатель 23. Толкатель воздействует через пружину 22 на диафрагму 20 и прогибает ее вниз.

Коромысло 19 под воздействием диафрагмы перемещается вниз и приводит в действие клапаны. Атмосферный клапан 18 закрывается, а впускной 25 открывается и сообщает внутреннюю полость крана под диафрагмой с воздушным баллоном.

При этом сжатый воздух из баллона поступает через кран в тормозную камеру 11. В тормозной камере создается давление, под воздействием которого диафрагма 17, сжимая пружины 12, смещается вправо и через шток 13 и соединенный, с ним рычаг 16 поворачивает разжимной кулак. Разжимной кулак, поворачиваясь, раздвигает колодки, которые прижимаются к тормозному барабану, происходит торможение колеса.

Пневматическая тормозная система: устройство и работа

Схема пневматического привода тормозов: 1 — компрессор; 2 — поршни компрессора; 3 — воздушный фильтр; 4, 9 и 27- трубопроводы; 5 — предохранительный клапан; 6 — манометр; 7 — воздушный баллон; 8 — кран для выпуска конденсатора; 10 — гибкий соединительный шланг; 11 — тормозная камера; 12 — пружина; 13 — шток диафрагмы; 14 — тормозные колодки; 15 — разжимной кулак; 16 — рычаг разжимного кулака; 17 — диафрагма; 18 — атмосферный клапан; 19 — коромысло; 20 — диафрагма тормозного крана; 21 — тормозной кран; 22 — пружина; 23 — толкатель; 24 — рычаг; 25 — впускной клапан; 26 — педаль ножного тормоза; 28 — регулятор давления

Тормозной кран является одновременно редуктором, поддерживающим определенное давление воздуха в тормозных камерах при торможении. Когда давление воздуха в полости под диафрагмой станет больше необходимой для нормального торможения величины, диафрагма, сжимая пружину. 22, приподнимется и впускной клапан прикроется, поступление воздуха из баллона прекратится.

Когда педаль тормоза отпущена, диафрагма тормозного крана поднимается и прекращается воздействие коромысла 19 на клапаны.

Под действием пружин впускной клапан 25 закроется, а атмосферный 18 — откроется. Полость тормозного крана разобщится с воздушным баллоном и сообщится с атмосферой.

Находящийся в тормозной камере сжатый воздух начнет выходить через тормозной кран в атмосферу.

Давление в тормозной камере резко снижается и диафрагма, возвращаясь под действием пружин 12 в первоначальное положение, повернет разжимной кулак в обратном направлении. Тормозные колодки под действием стяжной пружины отойдут от тормозного барабана, и торможение колес прекратится.

Необходимый для работы тормозного привода сжатый воздух нагнетается в баллоны пневматической системы автомобиля компрессором.

Компрессор представляет собой двухцилиндровый поршневой насос, устанавливаемый на кронштейне, прикрепленном к головке блока цилиндров двигателя.

Поршни 12, установленные в цилиндрах компрессора, через шатуны 15 соединены с коленчатым валом 17. Коленчатый вал компрессора приводится во вращение от коленчатого вала двигателя ременной передачей.

При вращении коленчатого вала поршни поочередно перемещаются вниз, создавая в цилиндрах разрежение. Когда поршень подойдет к нижней мертвой точке, он откроет впускные окна 13 в стенке цилиндра, соединив тем самым полость цилиндра с атмосферой, через воздушный фильтр 3 атмосферный воздух заполнит цилиндр.

При движении вверх поршень перекрывает впускные окна и сжимает воздух.

Пневматическая тормозная система: устройство и работа

Компрессор: 1 — головка блока цилиндров компрессора; 2 — диафрагма; 3 — грибок; 4 — коромысло; 5 — спиральная пружина; 6 — разгрузочная камера; 7 — перепускная камера; 5 — регулировочный болт перепускного клапана; 9 — перепускной клапан; 10 — регулировочный болт нагнетательного клапана; 11 — нагнетательный клапан; 12— поршень; 13 — впускное окно; 14 — палец поршня; 15 — шатун; 16 — шарикоподшипник; 17 — коленчатый вал; 18 — блок цилиндров компрессора

Сжатый в цилиндрах воздух через нагнетательные клапаны 11 поступает по трубопроводу в воздушный баллон. Детали компрессора смазываются маслом, подаваемым из системы смазки двигателя по трубопроводу в торец коленчатого вала компрессора.

К шатунным подшипникам масло подводится по каналам, просверленным в коленчатом валу, а к поршневым пальцам — через каналы в шатунах.

Стенки цилиндров и коренные подшипники смазываются разбрызгиванием. Стекающее с деталей масло собирается в нижней части картера компрессора и по трубопроводу стекает в картер двигателя.

Головка 1 блока цилиндров компрессора охлаждается жидкостью, поступающей по трубопроводу из системы охлаждения двигателя.

Компрессор снабжен разгрузочным устройством, размещенным в головке блока его цилиндров, которое обеспечивает холостой ход компрессора при повышении давления в пневматической системе выше необходимого и регулирует количество и давление нагнетаемого в систему воздуха.

В разгрузочной камере 6 помещена диафрагма 2, на которую опирается грибок 3. На стержень грибка в свою очередь опирается коромысло 4, которое своим вильчатым концом может воздействовать на два перепускных клапана, открывая их.

При этом цилиндры компрессора сообщаются между собой.

Полость разгрузочной камеры под диафрагмой соединена трубопроводом с регулятором давления. Регулятор давления состоит из корпуса 9, шариковых клапанов 8 и пружины 3.

Совместная работа разгрузочного устройства и регулятора давления заключается в следующем.

Для обеспечения нормальной работы тормозов давление воздуха в системе пневматического привода должно поддержираться в пределах 6—7 кг/см2, что осуществляется с помощью регулятора давления и разгрузочного устройства компрессора.

Когда давление в пневматической системе станет выше 7 кг/см2, шариковые клапаны 8 регулятора давления, сжимая через шток 5 пружину 3, приподнимутся, открывая отверстие в нижнем гнезде и перекрывая отверстие в верхнем гнезде клапанов.

При этом воздух из баллона направится к компрессору, поступая в полость под диафрагмой 2 разгрузочного устройства. В разгрузочной камере 6 создается давление, под действием которого диафрагма 2 прогибается вверх и приподнимает грибок 3.

Грибок своим стержнем воздействует через коромысло 4 на стержни перепускных клапанов. Клапаны открываются и сообщают между собой цилиндры. Воздух при сжатии переходит из одного цилиндра в другой.

В результате давление в цилиндре оказывается недостаточным, чтобы открыть нагнетательный клапан, и воздух не подается в пневматическую систему автомобиля.

Пневматическая тормозная система: устройство и работа

Регулятор давления: 1 — кожух; 2 — регулировочный колпак; 3 — пружина регулятора; 4 — упорный шарик пружины; 5 — шток клапана; 6 — гайка регулировочного колпака; 7 — седло регулятора; 8 — шариковые клапаны; 9 — корпус; 10 — фильтр; 11 — штуцер; 12 — канал

Когда давление в системе станет меньше 6 кг/см2, под действием пружины 3 регулятора давления шариковые клапаны 8 опустятся вниз, перекроют отверстие в нижнем гнезде и откроют — в верхнем. Поступление воздуха из баллона к компрессору прекратится, а находящийся в разгрузочной камере воздух через канал 12 в регуляторе давления выйдет в атмосферу.

Давление в разгрузочной камере снизится до атмосферного, и перепускные клапаны под действием пружин закроются. Компрессор начнет нагнетать воздух в баллоны.

Для предохранения от чрезмерного давления воздуха в случае неисправности регулятора давления в пневматической системе имеется предохранительный клапан. Он отрегулирован так, что при достижении давления воздуха в системе 9—10 кг/см2 шарик 6 приподнимается, сжимая пружину 4, и воздух из пневматической системы через отверстие в корпусе клапана выходит в атмосферу.

Пневматическая тормозная система: устройство и работа

Предохранительный клапан: 1 — регулировочный винт; 2 — контргайка; 3 — стержень клапана; 4 — пружина; 5 — корпус; 6 — шарик клапана

Давление в пневматической системе контролируется манометром, установленным на приборном щитке в кабине автомобиля.

Устройство автомобилей

Пневматический привод широко используется в тормозной системе тягачей, грузовых автомобилей средней и большой грузоподъемности и автобусов. В тормозной системе с пневматическим приводом тормозные механизмы включаются за счет использования энергии сжатого воздуха.

Первая пневматическая тормозная система была запатентована американцем Д. Вестингаузом в 1872 году и предназначалась для использования в железнодорожном транспорте. Изобретение пневматического привода стало поистине революционным для железных дорог, обеспечивая надёжное торможение поездов в автоматическом режиме, что позволило существенно увеличить массу и скорость железнодорожных составов.

Для автомобилей пневмопривод тормозов впервые был предложен американским инженером Д. Стартевентом в 1904 г., но в серийном автомобильном производстве стал применяться лишь в сороковых годах прошлого столетия.

Причиной, по которой инженеры-конструкторы обратили на пневмопривод более пристальных взор — стремительный рост мощности, производительности и грузоподъемности автотранспортных средств, передвигавшихся, к тому же, все более стремительно.

Применявшиеся в те годы гидравлические и механические приводы не могли обеспечить надежное и эффективное торможение тяжелых автомобилей, и уж тем более — автопоездов.

В гидравлическом приводе без специальных усилителей величина тормозных усилий на исполнительных элементах тормозных механизмов лимитируется физическими возможностями человека, а с использованием гидровакуумных и вакуумных усилителей – размерами вакуумной диафрагмы, которая, при необходимости создания значительных усилий, разрасталась до огромных габаритов, негативно влияя на компоновку автомобиля. Кроме того, увеличение усилия, передаваемого гидроприводом, влечет за собой существенное повышение давления жидкости в нем, что создает дополнительную опасность разгерметизации системы, т. е. снижает ее надежность. И если незначительные утечки воздуха в пневмоприводе не влияют на его работоспособность, то для гидропривода они губительны, приводя к отказу системы.

Пневматическая тормозная система: устройство и работа

Увеличение интенсивности дорожного движения и возросшие скорости ужесточают требования к тормозным системам автомобилей и автопоездов. Они регламентируются международными требованиями, государственными стандартами и отраслевыми нормативными документами.

  • По этим причинам на автомобилях полной массой более 9 тонн применяют пневматический привод тормозных механизмов, который может создавать практически неограниченное приводное усилие со стороны тормозных механизмов, обеспечивая эффективное торможение автотранспортных средств любой массы и на любой скорости.
  • Следует отметить, что пневматические тормозные системы отечественных автомобилей не уступают, а по некоторым показателям даже превосходят аналоги ведущих зарубежных фирм.
  • ***

Преимущества и недостатки пневматического привода

Широкое распространение пневматического привода транспортных средств объясняется целым рядом преимуществ:

  • возможность создания больших разжимных сил на тормозных колодках при малом усилии на педали управления;
  • доступность, дешевизна и безопасность рабочего тела для работы пневмопривода (обычный атмосферный воздух);
  • возможность накопления большого количества потенциальной энергии сжатого воздуха в специальных баллонах-аккумуляторах (ресиверах), позволяющей долго и эффективно тормозить даже при отказе основного источника энергии (компрессора);
  • допустимость незначительных естественных утечек сжатого воздуха из-за негерметичности (незначительные утечки компенсируются запасом сжатого воздуха и компрессором);
  • простота и удобство соединения магистралей при составлении автопоезда;
  • достаточно высокий КПД (0,8…0,85);
  • возможность использования энергии сжатого воздуха для привода различных вспомогательных устройств и оборудования автомобиля (пневматический звуковой сигнал, стеклоочистители, привод дверей автобуса, привод переключения КПП, усилитель сцепления, подкачка шин и т. п.).

Недостатками пневматического привода являются:

  • большое время срабатывания вследствие медленного поступления сжатого воздуха к удаленным воздухонаполняемым объемам через трубопроводы с малым диаметром, а также из-за свойства сжимаемости воздуха (как и любого газа);
  • сложность конструкции и высокая стоимость (особенно многоконтурного привода);
  • большие масса и габариты приборов пневмопривода по сравнению с гидроприводом;
  • существенные затраты мощности на привод компрессора;
  • возможность выхода пневмопривода из строя при замерзании конденсата в трубопроводах и аппаратах при отрицательных температурах.

Обеспечивая высокое усилие, пневматический привод имеет массу, значительно превышающую массу эквивалентного по эффективности гидравлического привода, а также заметно дороже его. Так, например, на одиночном автомобиле марки «КамАЗ» пневмопривод содержит до 25 приборов и аппаратов, до шести ресиверов и примерно 70 м трубопроводов. Очевидно, что стоимость такого привода достаточно высокая.

Время срабатывания пневматического привода весьма продолжительное – у одиночных автомобилей оно составляет 0,4…0,7 сек, а у автопоездов может достигать 1,5 сек. Время растормаживания достигает 1,2 сек. Исходя из этого, можно сделать вывод, что по быстродействию пневматический привод в 5…10 раз медленнее гидравлического привода.

Общее устройство пневматического привода тормозов

На рис. 1 изображена схема пневматического привода тормозов автомобиля ЗИЛ-433100. Для детального ознакомления со схемой необходимо щелкнуть мышкой по рисунку 1. Увеличенное изображение схемы с пояснениями к номерам позиций откроется в отдельном окне браузера.

Основными элементами пневматического привода являются компрессор 1, ресиверы (воздушные баллоны) 9, 10, 11, 22, 23, хранящие запас сжатого воздуха, кран управления 18, магистрали и исполнительные элементы, воздействующие на разжимные устройства тормозных механизмов. В качестве таких исполнительных устройств обычно используют тормозные камеры 2, 29 диафрагменного типа.

Пневматическая тормозная система: устройство и работа

Кроме основных элементов, пневматический привод современного автотранспортного средства включает различные дополнительные приборы и устройства, обеспечивающие его надежное функционирование, как в одиночном автомобиле, так и в составе автопоезда.

Все приборы пневматического тормозного привода делятся на следующие группы: питающие, приборы управления, регулирующие, исполнительные.

Питающие приборы подготавливают энергоноситель (сжатый воздух) к работе и распределяют его по контурам. Сюда относятся компрессор с регулятором давления воздуха, устройство, предохраняющее конденсат от замерзания, трубопроводы и различные соединительные элементы, в том числе и для присоединения пневмопривода тягача к пневмоприводу прицепа (полуприцепа).

  1. К приборам управления относятся тормозные краны всех систем (рабочей, стояночной, запасной, вспомогательной), а также краны и клапаны управления тормозными системами прицепа или полуприцепа.
  2. К регулирующим приборам относятся регуляторы тормозных сил, ускорительные клапаны, клапаны быстрого растормаживания.
  3. К исполнительным приборам относятся тормозные камеры и пружинные энергоаккумуляторы.

Принцип действия пневматического привода тормозных механизмов достаточно прост – при торможении автомобиля (нажатие на тормозную педаль) кран соединяет ресиверы с магистралями, устанавливая в них давление воздуха, пропорционально силе, приложенной водителем к тормозной педали.

При снятии усилия с тормозной педали кран отсоединяет магистрали от ресиверов и соединяет их с окружающей средой, выпуская сжатый воздух из системы. Подобно гидравлическому, пневматический привод разделяется на контуры, причем каждый отдельный контур оснащается своим ресивером с запасом сжатого воздуха и управляется отдельной секцией крана.

Это необходимо для повышения надежности привода и сохранения управляемости автомобилем в случае разгерметизации или отказа одного из контуров.

Одноконтурный пневматический привод прост по конструкции, но современные требования к безопасности движения исключают его использование на автомобилях из-за низкой надежности.

Поэтому на современных автомобилях применяются многоконтурные приводы, и помимо двух обязательных контуров рабочей тормозной системы применяют несколько независимых контуров других тормозных систем.

Так, пневматический тормозной привод автомобиля КамАЗ-4310 имеет шесть независимых контуров:

  • контур питания потребителей сжатым воздухом;
  • контур привода тормозных механизмов передних колес;
  • контур привода тормозных механизмов задних колес;
  • контур привода стояночной тормозной системы;
  • контур привода вспомогательной тормозной системы;
  • контур аварийного растормаживания стояночной тормозной системы.

Кроме того, имеется целый ряд приборов, обеспечивающих работу привода тормозных механизмов прицепа и осуществляющих контроль над состоянием элементов тормозного привода. Аналогичной тормозной системой осуществляются современные модели автомобилей ЗиЛ, МАЗ, КрАЗ и др.

Особенно удобен пневматический привод для использования на автопоездах. Исполнительные механизмы привода тормозной системы прицепа (или полуприцепа) питаются от установленных на них отдельных ресиверов посредством дополнительного крана, который называется воздухораспределителем.

Пневматическая тормозная система: устройство и работа

Соединение тормозных систем тягача и прицепа может быть однопроводным или двухпроводным.

При однопроводном приводе прицеп соединен с тягачом с помощью одной магистрали, через которую осуществляется как наполнение ресиверов прицепа сжатым воздухом, так и передача на прицеп команд на торможение с заданной водителем интенсивностью.

Преимуществом однопроводного тормозного привода прицепных автотранспортных средств является его простота, а также то, что при отрыве прицепа от тягача он автоматически, без применения дополнительных устройств, затормаживает прицеп вследствие того, что давление в разорвавшейся соединительной магистрали падает до нуля.

В двухпроводном приводе посредством одной магистрали, связывающей тягач с прицепом (полуприцепом), постоянно пополняется запас сжатого воздуха в ресиверах прицепа. Эта магистраль называется питающей. Другая магистраль (управляющая) управляет воздухораспределителем прицепа. Давление воздуха в управляющей магистрали изменяется пропорционально изменению давления в тормозных магистралях тягача.

Двухпроводный привод обладает рядом преимуществ по сравнению с однопроводным:

  • обеспечение лучшего согласования торможения тягача и прицепа благодаря одинаковому давлению сжатого воздуха в ресиверах тягача и прицепа:
  • повышение эффективности работы тормозов прицепа и уменьшение времени их срабатывания;
  • при частых торможениях тормозная система прицепа с двухпроводным приводом эффективно пополняет запас сжатого воздуха в ресивере, поддерживая постоянство рабочего давления.

Автомобильные фирмы США, а также большинства европейских стран применяют на прицепах двухпроводный привод тормозных систем.

В Германии получил распространение комбинированный привод (одно- и двухпроводный), а отдельные фирмы Великобритании и Франции используют трехпроводной привод управления тормозами прицепа.

При этом третий контур используется в качестве запасного контура тормозной системы прицепа.

Клапаны управления тормозными системами прицепов с двухпроводным приводом и с однопроводным приводом являются аппаратами управления тормозными системами прицепов. Они устанавливаются на автомобилях-тягачах.

Комбинации тормозных приводов

На длиннобазовых автомобилях и тягачах большегрузных автопоездов часто используются комбинированный гидропневматический привод тормозных механизмов.

В таком приводе для увеличения тормозных усилий используется энергия сжатого воздуха, а передача их к тормозному механизму осуществляется жидкостью.

Использование гидропневматического привода позволяет увеличить скорость его срабатывания, но приводит к усложнению конструкции тормозной системы.

Некоторые прицепы могут снабжаться электромагнитным клапаном, который служит для управления подачей сжатого воздуха к тормозным камерам, выполняя функцию крана-распределителя, а также для включения тормозной системы прицепа при торможении автомобиля вспомогательной тормозной системой (моторным или специальным тормозом-замедлителем).

При подаче электрического сигнала электромагнитному клапану от тягача он обеспечивает поступление сжатого воздуха из ресивера к тормозным камерам, а при прекращении управляющего сигнала открывает доступ магистрали к внешней среде, сбрасывая давление в ней.

Такая конструкция относится к электропневматическим комбинированным тормозным приводам.

Комбинированный тормозной привод Многоконтурный пневматический тормозной привод

Главная страница

Специальности

Учебные дисциплины

Олимпиады и тесты

Назначение и общее устройство пневматического привода тормозов

Пневматический привод предназначен для управления впуском и выпуском сжатого воздуха, приводящего в действие тормозные механизмы.

Он применяется на автомобилях и автопоездах средней, большой и особо большой грузоподъемности, так как использование энергии двигателя, аккумулированной в давлении сжатого воздуха, позволяет существенно облегчить труд водителя.

Мускульная энергия последнего затрачивается лишь на процесс управления впуском и выпуском сжатого воздуха.

Другими преимуществами пневматического привода являются: точность слежения, обеспечивающего пропорциональность интенсивности торможения (замедления) величине усилия, приложенного к тормозной педали; возможность управления тормозами прииепа на обеспечение желаемой разницы между режимами торможения прицепа и тягача. Однако по сравнению с гидравлическим пневматический привод конструктивно сложнее и дороже, обладает меньшим (в 10—15 раз) быстродействием, имеет большую массу и габариты.

Использование энергии сжатого воздуха возможно только при включении в привод приборов со следящим действием, которые позволяют воспроизводить (отслеживать) закономерность изменения давления в исполнительных механизмах в зависимости от усилия, приложенного к органу управления. От величины давления в исполнительных механизмах зависят усилия, приводящие в действие тормозные механизмы.

Источником энергии сжатого воздуха является компрессор. Приборами следящего действия — диафрагменные или поршневые тормозные краны. Исполнительными механизмами — поршневые цилиндры или диафрагменные камеры.

Рекламные предложения на основе ваших интересов:

Тормозные краны регулируют передачу энергии от источника к тормозным камерам или цилиндрам. По принципу работы они подразделяются на краны прямого и обратного действия.

Тормозные краны прямого действия пропускают сжатый воздух из воздушных баллонов в тормозные камеры, увеличивая давление в них.

Тормозные краны обратного действия выпускают сжатый воздух из тормозных камер, снижая давление в них.

В зависимости от принципа взаимосвязи с прицепами пневматический привод может быть одно- и двухпроводным. Применительно к отечественному автотранспорту стандартизован однопроводный привод.

При однопроводном приводе соединение тормозной системы тягача с тормозной системой прицепа (полуприцепа) осуществляется одним гибким трубопроводом, который используется как в качестве питающего (зарядка баллонов прицепа сжатым воздухом), так и в качестве магистрали управления интенсивностью торможения прицепа.

Двухпроводный привод имеет два гибких шланга, соединяющих тормозные системы тягача и прицепа. По одному из шлангов непрерывно подзаряжаются сжатым воздухом воздушные баллоны, по прицепа осуществляется управление интенсивностью торможения

В работе магистралей управления однонроводного и двухпроводного приводов имеются принципиальные отличия. При одно-и шлангов, соединяющих эти аппараты, и трубопровода от нижней секции тормозного крана к нижней секции клапана управления тормозами прицепа с двухпроводным приводом.

  • Контур привода тормозов колес задней тележки рабочей тормозной системы и прицепа состоит из части тройного защитного клапана, воздушного баллона емкостью 40 л, верхней секции двухсекционного тормозного крана, автоматического регулятора торможения, четырех тормозных камер, клапана контрольного вывода, трубопроводов и шлангов, соединяющих эти аппараты, и трубопровода от верхней секции тормозного крана к верхней секции клапана управления тормозами прицепа с двухпроводным приводом.
  • Контур привода тормозов стояночной и запасной систем и прицепа, а также питания комбинированного привода тормозов прицепа (полуприцепа) состоит из части двойного защитного клапана, двух воздушных баллонов общей емкостью 40 л, клапана контрольного вывода, ручного тормозного крана, ускорительного клапана, части двухмагистрального перепускного клапана, четырех пружинных энергоаккумуляторов, трубопроводов и шлангов между аппаратами, трубопровода от ручного тормозного крана к средней секции клапана управления тормозами прицепа с двухпроводным приводом и трубопровода от воздушного баллона к одинарному защитному клапану для питания привода тормозов прицепа.
  • Контур привода заслонок моторного тормоза-замедлителя вспомогательной тормозной системы и питания потребителей состоит из части двойного защитного клапана, воздушного баллона емкостью 40 л, клапана контрольного вывода, пневматического крана, двух цилиндров привода заслонок моторного тормоза-замедлителя, цилиндра привода выключения подачи топлива, трубопроводов и шлангов между аппаратами.
  • От контура привода вспомогательной тормозной системы сжатый воздух поступает к дополнительным (нетормозным) потребителям: стеклоочистителям, пневмосигналу, пневмогидравлическому усилителю сцепления, управлению агрегатами трансмиссии и пр.
  • Контур привода системы аварийного растормаживания тормозов стояночной тормозной системы состоит из части тройного защитного клапана, пневматического крана, части двухмагистрального перепускного клапана, трубопроводов и шлангов, соединяющих аппараты.
  • Питание привода системы аварийного растормаживания тормозов стояночной тормозной системы осуществляется из воздушных баллонов контуров рабочей тормозной системы.
  • Питание привода тормозов прицепа осуществляется из воздушного баллона контура привода стояночной и запасной тормозных систем.

Рекламные предложения:

Читать далее: Устройство и работа приборов системы питания пневматического привода тормозов сжатым воздухом

Категория: — Автомобили Камаз Урал

Главная → Справочник → Статьи → Форум

Принципы работы пневматической тормозной системы

Каждый водитель без труда назовет массу отличий грузового автомобиля от легковой машины. Будут упомянуты вес, диски тормозные, габариты, величина шин и многое другое, однако основное отличие состоит именно в техническом устройстве машин.

У современных грузовых транспортных средств довольно сложная «начинка» и тормозная система не является исключением. Прежде всего, эта система работает по принципу пневматики, что в корне отличает ее от системы тормозов легкового автомобиля. Стоит отметить, что данная система грузовика является одним из важных составляющих безопасности всех участников дорожного движения.

Как работает пневматическая тормозная система грузового автомобиля?

Принцип использования силы сжатого воздуха – вот то, что лежит в основе функционирования пневматической тормозной системы. Этот воздух находится в прочных баллонах, его нагнетание осуществляется посредством специального мощного компрессора. Подобным принципом работы пневматическая тормозная система отличается от прочих систем.

Схема работы тормозной системы грузовика, основанной на пневматике, заключается в следующем. Компрессор из баллонов подает сжатый под давлением воздух в определенном количестве.

Давление в тормозных камерах создается после того, как нажатие на тормозную педаль передает усилие к тормозному крану.

После того как педаль тормоза отпускается, происходит ослабление рычага, вследствие чего процесс нагнетания давления приостанавливается.

Пневматическая тормозная система грузовика: работа в деталях

Чтобы понять, как работает пневматика на грузовом транспортном средстве, имеет смысл несколько углубиться в ее принцип действия.

Как только автомобиль начинает движение, его тормозная система также начинает делать свою работу, а именно: нагнетать воздух в резервуары. Важная деталь: тормозная педаль в это время обязательно должна быть отпущена.

После того, как в баллоны поступит достаточный объем сжатого воздуха, он устремится к тормозному крану. При условии, что грузовой автомобиль оснащен прицепом, воздух будет поступать по системе также и в резервуары прицепа, благодаря чему получится непрерывный контакт всех систем автомобиля.

После того, как будет нажата педаль тормоза, открывается тормозной кран после перекрытия ряда секция тормозного узла. В этот момент сжатый воздух под давлением начинает поступать в пневматические камеры, что влечет за собой торможение транспортного средства.

Стоит обратить внимание на тот факт, что приведение в действие тормозов прицепа осуществляется именно верхней секцией системы. Нижняя секция тормозной системы, в свою очередь, является ответственной за остановку самого грузовика, который исполняет роль тягача.

Стоит рассмотреть данный принцип более детально.

После того как сжатый воздух поступил в пневматические камеры, диафрагма начинает под его воздействием продавливаться, сжимая при этом встроенную внутри нее пружину.

Следом давление на себе ощущает толкатель и, наконец, основное усилие принимает на себя рычаг разжимного кулачка системы. Валик, расположенный на этой небольшой детали, поворачиваться, разводя в разные стороны тормозные колодки. Благодаря этому процессу автомобиль тормозит.

Из чего состоит пневматическая тормозная система грузового транспортного средства?

Пневматическая тормозная система грузовика состоит из нескольких важных элементов, позволяющих работать узлу бесперебойно. Итак, состав пневматической тормозной системы – это:

  • привод управления (элементы пневмопривода), которые позволяют производить намеренное или автоматическое регулирование ряда деталей энергетического привода;
  • энергетический привод представляет собой набор элементов пневматической тормозной системы грузовика, обеспечивающих обогащение привода управления воздухом, который находится под давлением.
  • тормоз является практически главным в данной системе, так как именно в нем сосредоточены все силы, которые обеспечивают сопротивление несанкционированному движению транспортного средства в одну из сторон. В свою очередь, тормоз пневматический системы делится на следующие типы:

Срабатывает во время соприкосновения двух движущихся навстречу друг другу элементов тормозной системы грузовика;

Торможение осуществляется во время возникновения силы трения под воздействием электромагнитного поля;

В центре внимания опять два следующие навстречу друг другу объекта системы, взаимодействие между которыми возникает во время увеличения давления в жидкости;

Кинетическая сила передается на колеса транспортного средства, которая возникает благодаря возрастающей тормозящей величине.

  • Компрессор — устройство, известное современным людям из их же быта. Привычные всем холодильники также работают на компрессорах. Суть функционирования данного прибора заключается в его работе по типу воздушного насоса, который отвечает за поступление в тормозную систему воздуха в должном объеме. Кроме того, компрессор является ответственным за регулировку давления воздуха внутри системы.

В составе компрессора тормозной пневматической системы есть специальный регулятор, следящий за давлением, то есть подающий сжатый кислород компрессором.

Это необходимо делать для того чтобы параметры не превышали заданные разработчиками пределы. При сбое в работе датчика, велик риск сбоя всей системы.

А это прямой путь к неисправности тормозной пневматической системы грузового транспортного средства.

  • Осушитель воздуха расположен непосредственно в компрессоре, главная миссия которого заключается в подготовке воздуха, поступающего в пневматическую систему. В процессе осушения из воздуха испаряются молекулы влаги, масляные отложения, загрязнения, вредные примеси и т. д.

Стоит также отметить, что практически все осушители воздуха, интегрированные в современные пневмосистемы, не только выполняют свою прямую обязанность, но и осуществляют процесс регенерации.

  • Предохранитель от замерзаний – это еще один довольно интересный агрегат, которым часто оснащаются пневматически тормозные системы грузовиков. Как правило, это транспортные средства с внушительной комплектацией.

В чем заключается принцип работы этого элемента системы тормозов? По своей сути он довольно прост. Этот агрегат в холодное время года вводит особый химический состав в резервуары со сжатым воздухом. Это позволяет не замерзать конденсату в морозы, что не создаст дополнительных проблем в работе пневматической тормозной системы.

Неисправности пневматической тормозной системы грузовика и причины их возникновения

После знакомства с основными комплектующими тормозной пневмосистемы грузового транспортного средства и детального рассмотрения принципа их работы, следует рассмотреть и возможные неисправности, которые, увы, встречаются нередко. Не лишним также будет упомянуть и о том, что подавляющее число этих неисправностей похоже на поломки в других видах тормозных систем. Итак, вот основные три:

  • Во время нажатия педали тормоза не происходит никакой реакции системы. Эта неприятность может случиться по причине нехватки воздуха, который поступает из баллонов. При возникновении данной проблемы следует незамедлительно осуществить диагностику компрессора, для того чтобы можно было исправить ошибку в самое ближайшее время.
  • Слишком длинный тормозной путь грузовика. Все дело в плохо отрегулированной тормозной педали (деталь разболталась). Следует обратиться за помощью на одну из станций технического обслуживания, где решаются подобные проблемы. Там же можно проверить и рычаги тормозные.
  • 3Несинхронная работа тормозов. Главная причина возникновения этой неисправности состоит в разбеге зазоров, которые имеются на тормозных накладках. Решение проблемы – регулировка тормозной пневмосистемы в на СТО.

Разумеется, список неполадок и сбоев в работе пневматической тормозной системы грузового автомобиля на порядок больше, однако вышеперечисленные встречаются чаще остальных. Так или иначе, если водитель замечает какое-то нарушение в привычной работе тормозов, нужно сразу же обратиться за квалифицированной помощью специалистов.

Пневматическая тормозная система грузового автомобиля должна быть исправна!

Совершенно ясно, что система тормозов грузовика является одним из наиболее важных его механизмов.

Вместе с тем, это и довольно сложная система, которая позволяет осуществлять торможение негабаритных и очень тяжелых грузовых транспортных средств.

А это означает, что каждый водитель должен знать основной принцип ее устройства и функционирования. Эта важная информация позволит в одной из форс-мажорных ситуация среагировать быстро и правильно.

https://ravon82.ru/vozhdenie/princip-dejstviya-pnevmaticheskoj-tormoznoj-sistemy-2.html
https://autodromo.ru/articles/tormoznaya-sistema-avtomobilya-ustroystvo-naznachenie-i-princip-deystviya-tormozov
https://razborauto43.ru/hodovaya-chast/pnevmaticheskaya-tormoznaya-sistema-ustrojstvo-i-rabota.html