Содержание
Трансмиссия и колеса трактора – конструктивные особенности элементов
Колесные трактора используются гораздо чаще, чес гусеничные агрегаты. Это связано с возможностью самостоятельного ремонта подвески, меньшей стоимостью и простотой в эксплуатации. Трактора на колесах менее проходимы своих гусеничных аналогов, однако они отличаются лучшей маневренностью, что ценится в поле гораздо больше.
Элементы трансмиссии трактора и их предназначение
Одним из наиболее важных элементов каждого трактора является его трансмиссия. Именно от ее надежности и исправности напрямую зависит способность трактора выполнять свою работу.
В случаях, когда в конструкцию трансмиссии трактора входят только одни механизмы с шестернями, она именуется механической трансмиссией. Если же помимо вышеперечисленных элементов в конструкцию входит гидротрансформатор, то такая конструкция будет называться гидромеханической.
Буквами на изображении обозначены схемы механических колесных и гусеничных трансмиссий.
Цифрами обозначаются такие элементы:
- 1 – конечная передача;
- 2 – дифференциал трансмиссии;
- 3 – устройство сцепления;
- 4 – КПП;
- 5 – главная передача;
- 6 – промежуточное соединение;
- 7 – механизмы, отвечающие за поворот;
- 8 и 9 – специальные элементы;
- 10 – карданные валы.
Благодаря сравнительно простой конструкции и надежности при эксплуатации, на большинство тракторов устанавливаются именно механические трансмиссии. В их конструкцию входят такие элементы:
- Сцепление – устройство, предназначенное для передачи крутящего момента от мотора на колеса трактора. Этот элемент также позволяет временно отключать мотор от остальных устройств и снова плавно подключать его;
- Промежуточное соединение играет роль устройства, передающего вращение от вала на другие элементы трансмиссии. Благодаря наличию этой детали, трактор продолжает работать даже в случаях неправильного положения осей валов, образовавшихся в результате некорректной сборки агрегата;
- КПП – используется для преобразования крутящего момента по направлению и величине. Другими словами, КПП дает возможность менять передаточное число, изменяя, таким образом, скорость передвижения. Помимо этого, коробка передач дает возможность менять траекторию движения трактора и выполнять плавный поворот техники;
- Главная передача отвечает за уменьшение частоты вращения валов и увеличение крутящего момента;
- Дифференциал – устройство, которое распределяет крутящий момент между валами и колесами. Благодаря этому элементу, колеса машины способны вращаться с разной частотой;
- Конечные передачи предназначены для понижения частоты вращения и увеличения крутящего момента, передаваемого мотором;
- Механизм поворота дает трактору возможность поворачиваться;
- Специальные элементы представляют собой ходоуменьшители или раздаточные коробки. Они не всегда устанавливаются на технику;
- Карданные валы передают крутящий момент между несоосными элементами трансмиссии.
Достаточно простая схема трансмиссии механического типа пользуется популярностью благодаря простоте и возможности быстрого ремонта. В случае необходимости, определить и устранить поломку этого узла сможет практически каждый водитель.
Колеса трактора – из чего состоят элементы?
Колеса трактора изготавливаются по достаточно простому принципу: пневматическая шина надевается на обод и плотно соединяется с диском. Сам диск крепится к ступицам посредством мощных болтов.
Пневматические шины состоят из таких элементов, как покрышка и камера. Покрышка играет роль своеобразного чехла, для изготовления которого используется плотная толстая резина. Камера на трактор – это замкнутая трубка в форме кольца, для производства которой применяется эластичная резина для тракторов. На камере находится вентиль, который предназначается для подкачки камеры или выпускания воздуха.
Шины для сельхозтехники и тракторов могут быть двух видов:
- Диагональные – в их конструкция входит каркас, имеющий несколько слоев корда, расположенных накрест;
- Радиальные – они стоят гораздо дороже за счет хорошей эластичности и отличных сцепных характеристик.
При выборе шин для трактора следует учитывать несколько важных характеристик изделий:
- Сцепление с почвой;
- Показатель проходимости;
- Устойчивость к порезам, проколам и другим повреждениям;
- Свойства самоочистки;
- Показатель давления на почву.
Многие модели шин обладают отличными показателями в самоочистке и устойчивости к проколам, в то же время, как они не отличаются особой проходимостью и сцеплением с грунтом. От владельца техники требуется определить шины, имеющие средние показатели во всех параметрах. Такие изделия способны прослужить длительно время независимо от условий эксплуатации трактора.
Сдвоенные шины – особенности и преимущества
Колеса, изготовленные по принципу сдваивания шин, пользуются большим спросом среди владельцев техники. Плюсы этих изделий заключаются в следующем:
- Увеличение тягового усилия;
- Повышенное сцепление протектора с грунтом;
- Пониженный показатель пробуксовки;
- Наличие меньшего следа от колеи.
Благодаря этим достоинства сдвоенные шины оказывают минимальное давление на почву, и не портят ее.
Они отличаются высокой проходимостью, что дает возможность использовать технику в наиболее труднодоступных местах.
ТРАКТОРОВ И АВТОМОБИЛЕЙ. 1. Назначение тракторов и их основные типы
Устройство гусеничного трактора
Расположение основных частей и сборочных единиц гусеничного трактора показано на рисунке.
Рисунок. Схема расположения основных частей, механизмов и деталей гусеничного трактора: 1 — двигатель; 2 — гидравлическая навесная система; 3 — прицепное устройство; 4 — ведущее колесо; 5 — планетарный механизм; 6 — конечная передача; 7 — коробка передач; 8 — соединительный вал; 9 — сцепление; 10 — гусеничная цепь; 11 — направляющее колесо; 12 — главная передача.
Двигатель 1 преобразует химическую энергию топлива и атмосферного воздуха во вращательное движение и переносит его к потребителям — ведущим колесам и ВОМ.
Трансмиссия трансформирует вращательное движение, распределяет его и переносит к ведущим колесам (звездочкам гусениц). Трансмиссия состоит из сцепления 9, соединительного вала 8, коробки передач 7, механизмов поворота 5, главной 12 и конечных 6 передач.
Ходовая часть объединяет все сборочные единицы в одно целое и служит для перемещения трактора по опорной поверхности. В состав ходовой части входят остов (рама), подвеска и движитель, включающий в себя ведущие колеса 4 (звездочки), направляющие колеса 11, поддерживающие ролики и гусеничные цепи 10. Движитель взаимодействует с опорной поверхностью (почвой) и преобразует подведенное трансмиссией вращательное движение в поступательное движение трактора.
Механизмы управления, воздействуя на ходовую часть, изменяют траекторию движения трактора, останавливают и удерживают его неподвижно.
Рабочее оборудование трактора состоит из механизма навески 2 с гидроприводом, прицепного устройства 3, ВОМ и приводного шкива. Навесная система предназначена для крепления навесных машин на трактор и управления их работой. С помощью прицепного устройства буксируют различные прицепные машины и транспортные средства. ВОМ используют для приведения в действие рабочих органов агрегатируемых машин.
Вспомогательное оборудование трактора — это кабина с подрессоренным сиденьем, капот, приборы освещения и сигнализации, системы отопления и вентиляции, компрессор и др.
ТРАНСМИССИЯ БАЗОВЫХ МАШИН БАЗОВЫХ МАШИН
§ 7. Назначение, классификация и общее устройство трансмиссии базовых машин
Для передвижения и работы бульдозера, скрепера и грейдера базовая машина должна развивать движущую силу — силу тяги, превышающую сопротивления, возникающие на рабочих органах этих машин и при их перемещении. Необходимая сила тяги зависит от режима работы и изменяется в очень широком диапазоне. Например, при наборе грунта скрепером сила тяги должна быть в 10 раз больше, чем при транспортировании. Скорость бульдозеров, скреперов и грейдеров также изменяется в широких пределах — от 2…3,5 км/ч при резании и копании грунта до 8… 10 км/ч для гусеничных тракторов и до 30…50 км/ч для колесных машин в транспортном режиме.
Источником движущей силы базовой машины является двигатель, энергию сгорающего топлива двигатель при помощи кривошипно-шатунного механизма преобразует в механическую энергию, создавая на коленчатом валу вращательное усилие — крутящий момент. Этот момент должен быть подведен к гусеницам или ведущим колесам, называемым движителем, базовой машины. Благодаря сцеплению движителя с опорной поверхностью (дорогой или забоем) на вращающейся под действием крутящего момента гусенице (колесе) возникает сила тяги. Крутящий момент и частота вращения коленчатого вала изменяются очень незначительно и не могут обеспечить необходимый диапазон силы тяги и частоты вращения, а следовательно, и скорости движения машины. Эту задачу выполняет трансмиссия, установленная
между валом двигателя и движителем. Кроме указанного основного назначения с помощью трансмиссии можно плавно трогать машину с места и останавливать ее, отключать движитель от работающего двигателя, изменять направление движения машины.
Трансмиссии (рис, 28) гусеничных тракторов и одноосных тягачей состоят из однотипных сборочных единиц: муфты сцепления, соединительных валов, коробки передач, ведущего моста. Основная роль преобразователя в трансмиссии принадлежит коробке передач 3, которая с помощью переключаемого набора зубчатых передач на своем выходном валу и перед входом в ведущий мост 4 может изменять крутящий момент и частоту вращения в необходимом диапазоне.
По принципу включения передачи коробки делят на переключаемые при остановке машины и переключаемые на ходу. По принципу действия различают механические и гидромеханические коробки передач. Первые преобразуют крутящий момент и частоту вращения вала за счет включения разных зубчатых пар.
Механическая коробка передач показана на рис. 29. В корпусе 14 на подшипниках установлены два вала: входной (первичный) 1 и вторичный 11. Входной вал вращается с частотой пд, равной частоте вращения вала двигателя. Вторичный вал соединен с механизмами главной передачи заднего моста непосредственно или карданной передачей.
На входном валу расположены ведущие шестерни 4 и 5 соответственно низшей и высшей передач. Обе шестерни объединены в один блок и на шлицах перемещаются в осевом направлении с помощью планки 3 с вилкой, которые, в свою очередь, перемещаются рычагом 2. Шестерня заднего хода 7, сидящая подвижно на валу, включается планкой 6 с вилкой.
Рис. 28. Трансмиссии: а — гусеничных тракторов, б — одноосных тягачей; 1 — гидротрансформатор или муфта сцепления, 2 — соединительный вал, 3 — коробка передач, 4 — ведущий мост, 5 — главная передача, 6 — конечная передача или колесный редуктор, 7
ведущая звездочка или колесо, 8 — двигатель
Рис. 29. Схема механической коробки передач: а — нейтральное положение шестерен, б, в, г — положение шестерен при включении низшей, высшей и задней передач; 7, 17 — валы, 2 — рычаг переключения передач, 3,6 — планки с вилками, 4, 5, 7, 8, 70, 72, 13 — шестерни, 9 — главная передача, 14 — корпус
Рис. 30. Механизм переключения передач: 1 — рычаг, 2 — опора, 3 — кулиса, 4 — механизм блокировки переключения передач, 5 — фиксатор, 6…8 — валики, 9 — вилка, 10 — блок шестерен, 11 -вал, 12 — корпус
На вторичном валу неподвижно закреплены (шпонками или шлицами) три ведомые шестерни 13, 12, 10 соответственно низшей, высшей и задней передач. Отношение чисел зубьев ведомой шестерни к ведущей называют передаточным отношением. Для изменения направления движения шестерен и заднего хода введена промежуточная шестерня 8.
В планках 3 выполнены поперечные пазы, в которых может перемещаться рычаг переключения передач. Поперечным движением рычаг переключения передач может быть соединен с одной или другой планкой. Продольным перемещением рычаг двигает планку с вилкой и, следовательно, шестерню вперед или назад, благодаря чему она зацепляется с одной из шестерен 13 или 12. В нейтральном положении
шестерни 4, 5 и 7 не введены в зацепление и свободно вращаются со своими валами. Входной вал вращается, вторичный остановлен, и трактор неподвижен (рис. 29, а).
Когда передвигают рычаг 2 назад, планка с вилкой перемещаются вперед и в зацепление входят шестерни 4 и 13 (рис. 29, б). Шестерня 4 имеет наименьшее количество зубьев, а шестерня 13 — наибольшее, что обеспечивает самое высокое передаточное отношение коробки и низшую (рабочую) скорость движения трактора.
Для включения высшей передачи (рис. 29, в) вводят в зацепление шестерни 5 и 12, перемещая вилки назад, а рычаг 2 вперед. Число зубьев у шестерни 5 больше, чем у шестерни 4, а у шестерни 12 меньше, чем у шестерни 13. Поэтому получают меньшее передаточное отношение и высшую (транспортную) скорость движения, так как вторичный вал вращается с большей частотой пв.
Чтобы включить заднюю передачу (рис. 29, г), рычаг переводят
вправо и вводят его в зацепление с планкой 6 и вилкой. Затем, перемещая рычаг вперед, сдвигают вилку вместе с шестерней 7 назад и вводят в зацепление шестерни 7 и 8, которые передают вращение шестерне 10. Благодаря промежуточной шестерне вторичный вал получает противоположное вращение по сравнению с низшей и высшей передачами и трактор перемещается задним ходом.
На рис. 30 представлен механизм переключения передач, с помощью которого вводят шестерни в зацепление, обеспечивают их нейтральное положение, предотвращают самопроизвольное включение и выключение.
На корпусе 12 коробки сверху крепят конусный стакан, в котором размещена шаровая опора 2 рычага переключения 1. Нижний конец рычага входит в зацепление с тремя переключающими планками 6…8 (или валиками), которые имеют опоры в корпусе 12 коробки и свободно в них перемещаются в осевом направлении. В переключающих валиках выполнены три паза клиновидной формы, в которые входит фиксатор 5 с пружиной. Количество фиксаторов равно числу переключающих валиков. На валиках неподвижно закреплены вилки, которые входят в кольцевые пазы блока 10 шестерен, установленного подвижно на валу 11 с помощью шлицевого соединения. Перемещая рычаг 1 в поперечной плоскости, вводят его в зацепление с одним из валиков и переключают передачу движением валика в осевом направлении.
При такой конструкции механизма переключения включается одна из передач и исключается одновременное введение в зацепление нескольких шестерен. Чтобы предотвратить перемещение переключающих валиков, соударение зубьев и разрушение шестерен при включенном сцеплении, коробки оборудуют механизмом блокировки переключения передач
(рис. 31). Механизм представляет собой поперечный валик 3, в котором сделаны отверстия в местах размещения фиксаторов 4. При выключении педали 1 механизм управления 2 поворачивает валик 3 в такое положение, что отверстия размещаются против фиксаторов. Они могут подниматься, дают возможность перемещать валик и переключать передачу. При включении муфты сцепления педаль перемещается против часовой стрелки, поворачивая валик 3 на некоторый угол, благодаря чему верхние концы фиксаторов упираются в его цилиндрическую поверхность, блокируя включение передач.
Рис. 31. Механизм блокировки переключения передач: а — выключен, б — включен; 1 — педаль управления муфтой сцепления, 2 — механизм управления, 3 — валик, 4 — фиксатор, 5 — пружина, 6 — валик переключения передач, 7 — корпус
Рассмотренная коробка передач переключается при остановке, так как шестерни вводятся в зацепление только при отключенном от двигателя вале 1 (см. рис. 29) и остановленном вале И, т.е. неработающей машине.
Гидромеханическая коробка передач включает в себя гидротрансформатор и механическую часть. Простейший гидротрансформатор (рис. 32) состоит из насосного колеса 2, реактора 3, турбины 5, выполненных в виде колес, снабженных лопатками. Внутри колес образуется замкнутый кольцевой объем, в котором циркулирует масло (показано стрелками). Лопатки 8 насосного колеса 2, вращающегося вместе с валом 1 двигателя, с частотой вращения лн отбрасывают масло в сторону лопаток 7 турбины 5, увлекая ее вслед за насосом. Из турбины масло за счет наклона ее лопаток 7 выходит в направлении, обратном направлению вращения насосного колеса, и ударяется о лопатки 6 неподвижно закрепленного реактора 3. В результате этого удара создается ответная реакция потока жидкости на турбину. Таким образом, турбина вращается под действием крутящего момента двигателя, передаваемого ей потоком масла от насосного колеса, а также дополнительной силы от реактора, т.е. на валу 4 турбины (выходном валу гидротрансформатора) может
быть получен крутящий момент Мкр.т, который больше момента двигателя Мкр.дв.
При возрастании нагрузки турбина начинает замедлять вращение, в то время как поток жидкости от насосного колеса, вращающегося с прежней частотой, с большей силой ударяет в лопатки турбины и создает значительный крутящий момент. Наоборот, при увеличении частоты вращения турбины (уменьшении нагрузки) ее лопатки как бы убегают от потока жидкости и поэтому крутящий момент на турбине снижается.
Таким образом, изменяя крутящий момент на турбине и ее частоту вращения, автоматически регулируют в широком диапазоне силу тяги и скорость движения машины. Это позволяет сократить число ступеней в гидромеханической коробке по сравнению с механической.
Частота вращения турбины пт всегда меньше частоты вращения насосного колеса пн. Это явление называется скольжением и определяет потери энергии, т.е. коэффициент полезного действия гидротрансформатора. При нормальном скольжении КПД составляет 0,8…0,85, при максимальной нагрузке возникает полное скольжение и турбина останавливается. В этом случае КПД равен нулю, хотя на валу турбины развивается максимальный крутящий момент. Отношение максимального крутящего момента вала турбины к моменту двигателя называют коэффициентом трансформации. Он составляет 2,5…3,5 и определяет диапазон бесступенчатого изменения силы тяги и скорости машины в пределах одной ступени коробки передач.
В механической части гидромеханических коробок передачи включаются многодисковыми фрикционными муфтами, которые по сути являются муфтами сцепления и не требуют дополнительного отключения коробки от двигателя и от гидротрансформатора, а также остановки машины, так как частоты вращения ведущего и ведомого валов выравниваются за счет пробуксовки дисков. Такие коробки передач относятся к переключаемым на ходу.
Рис. 32. Схемы гидротрансформатора: а — конструктивная, б — гидравлическая; 1,4 — валы, 2- насосное колесо, 3 — реактор, 5 — турбина, 6…8 — лопатки
содержание .. 11 12 ..
Устройство колесного трактора
Назначение составных частей колесного трактора то же, что у гусеничного.
Рисунок. Схема расположения основных частей, механизмов и деталей колесного трактора: 1 — управляемое колесо; 2 — передний мост; 3 — двигатель; 4 — механизм навески; 5 — ведущее колесо; 6 — конечная передача; 7 — дифференциал; 8 — главная передача; 9 — коробка передач; 10 — сцепление.
Ходовая часть и механизмы управления колесного трактора состоят из остова, переднего моста 2, ведущих 5 и управляемых 1 колес, рулевого управления. Между главной 8 и конечной 6 передачами установлен дифференциал 7.
Трансмиссия и колеса трактора — конструктивные особенности
Колесные трактора используются гораздо чаще, чес гусеничные агрегаты. Это связано с возможностью самостоятельного ремонта подвески, меньшей стоимостью и простотой в эксплуатации. Трактора на колесах менее проходимы своих гусеничных аналогов, однако они отличаются лучшей маневренностью, что ценится в поле гораздо больше.
Элементы трансмиссии трактора и их предназначение
Одним из наиболее важных элементов каждого трактора является его трансмиссия. Именно от ее надежности и исправности напрямую зависит способность трактора выполнять свою работу.
В случаях, когда в конструкцию трансмиссии трактора входят только одни механизмы с шестернями, она именуется механической трансмиссией. Если же помимо вышеперечисленных элементов в конструкцию входит гидротрансформатор, то такая конструкция будет называться гидромеханической.
Буквами на изображении обозначены схемы механических колесных и гусеничных трансмиссий.
Цифрами обозначаются такие элементы:
- 1 – конечная передача;
- 2 – дифференциал трансмиссии;
- 3 – устройство сцепления;
- 4 – КПП;
- 5 – главная передача;
- 6 – промежуточное соединение;
- 7 – механизмы, отвечающие за поворот;
- 8 и 9 – специальные элементы;
- 10 – карданные валы.
Благодаря сравнительно простой конструкции и надежности при эксплуатации, на большинство тракторов устанавливаются именно механические трансмиссии. В их конструкцию входят такие элементы:
- Сцепление – устройство, предназначенное для передачи крутящего момента от мотора на колеса трактора. Этот элемент также позволяет временно отключать мотор от остальных устройств и снова плавно подключать его;
- Промежуточное соединение играет роль устройства, передающего вращение от вала на другие элементы трансмиссии. Благодаря наличию этой детали, трактор продолжает работать даже в случаях неправильного положения осей валов, образовавшихся в результате некорректной сборки агрегата;
- КПП – используется для преобразования крутящего момента по направлению и величине. Другими словами, КПП дает возможность менять передаточное число, изменяя, таким образом, скорость передвижения. Помимо этого, коробка передач дает возможность менять траекторию движения трактора и выполнять плавный поворот техники;
- передача отвечает за уменьшение частоты вращения валов и увеличение крутящего момента;
- Дифференциал – устройство, которое распределяет крутящий момент между валами и колесами. Благодаря этому элементу, колеса машины способны вращаться с разной частотой;
- Конечные передачи предназначены для понижения частоты вращения и увеличения крутящего момента, передаваемого мотором;
- Механизм поворота дает трактору возможность поворачиваться;
- Специальные элементы представляют собой ходоуменьшители или раздаточные коробки. Они не всегда устанавливаются на технику;
- Карданные валы передают крутящий момент между несоосными элементами трансмиссии.
Устройство автомобиля
Основные части автомобиля — двигатель, шасси и кузов. Принципиальная схема расположения основных частей и механизмов автомобиля мало отличается от схемы их расположения у колесного трактора.
Рисунок. Расположение основных механизмов автомобиля: 1 — направляющее колесо; 2 — передняя подвеска; 3 — сцепление: 4 — коробка передач; 5 — карданная передача; 6 — главная передача; 7 — дифференциал; 8 — задняя подвеска; 9 — ведущее колесо; 10 — рама; 11 — рулевое управление; 12 — двигатель
Вспомогательное оборудование автомобилей — это тягово-сцепное устройство, лебедка, системы отопления и вентиляции, компрессор и др.
Шасси автомобиля состоит из трансмиссии, ходовой части и механизмов управления. На шасси устанавливают кузов для размещения пассажиров или груза.
Компоновочная схема легковых переднеприводных автомобилей отличается от классической тем, что двигатель расположен поперек кузова и ведущими являются передние колеса. Это позволяет уменьшить массу автомобиля, эффективнее использовать его пространство, повысить устойчивость и проходимость.
Рисунок. Схема трансмиссии переднеприводного автомобиля: I — двигатель; II — сцепление; III — коробка передач; IV — главная передача и дифференциал; V — правый и левый приводные валы с шарнирами равных угловых скоростей; VI — ведущие (передние) колеса.
Механизмы поворота гусеничных тракторов. Как поворачивает гусеничная техника?
Поворот гусеничного трактора происходит при отключении от трансмиссии той гусеницы, в сторону которой надо повернуть трактор. Если нужно сделать крутой поворот, отключенную гусеницу притормаживают и трактор поворачивается на месте.
Гусеничный трактор идет прямолинейно, когда обе гусеницы на одинаково плотном грунте перематываются с равными скоростями. Если замедлить движение одной гусеницы, то трактор начнет поворачиваться в ее сторону, тем круче, чем больше отстает эта гусеница.
Механизм поворота большинства гусеничных тракторов представляет собой самостоятельный механизм, размещенный за главной передачей трактора. От двигателя к главной передаче идет один поток мощности, который далее распределяется механизмом поворота между правой и левой гусеницами.
В качестве механизмов поворота гусеничных тракторов используют фрикционные муфты поворота (Т-70С, Т-130), планетарный механизм (ДТ-75М, Т-4А).
У трактора Т-150 функции механизма поворота выполняет коробка передач, на вторичных валах которой установлены гидроподжимные фрикционные муфты и тормоза, при помощи которых трактор поворачивается.
Фрикционные муфты поворота
Фрикционные муфты поворота, как правило, изготовляют многодисковыми сухими постоянно замкнутыми.
Ведущей частью муфты служит вал 1 (рисунок а) главной передачи с расположенным на его шлицах ведущим барабаном 2.
На наружной цилиндрической поверхности барабана сделаны продольные канавки, в которых установлены внутренними зубцами тонкие стальные диски 3.
Схема фрикционной муфты поворота: а — муфта включена; б— муфта выключена; 1 — ведущий вал; 2 — ведущий барабан; 3 — диск ведущего барабана с внутренними зубцами; 4 — ведомый барабан; 5 — диск ведомого барабана с наружными зубцами; 6 — ведущий вал конической передачи; 7 — шпилька; 8 — пружина; 9 — нажимной диск
Ведомая часть муфты — барабан 4, укрепленный на ведущем валу 6 конечной передачи. На внутренней поверхности барабана сделаны канавки, в которые входят наружные зубцы дисков 5, снабженных фрикционными накладками. Ведомые и ведущие диски собраны через один.
На валу 1 установлен нажимной диск 9, вращающийся вместе с валом, но имеющий возможность перемещаться вдоль его оси. В диск 9 ввинчены шпильки 7, проходящие через отверстие барабана 2.
Глава 1 общее устройство тракторов автомобилей
Трактор — колесная или гусеничная машина, приводимая в движение установленным на ней двигателем, предназначенная для перемещения и приведения в действие различных машин и орудий, тележек или саней, а также для привода стационарных машин от вала отбора мощности или приводного шкива.
Современные тракторы классифицируют по назначению, типу движителей и остову.
По назначению
(рис. 1.1) различают тракторы:
общего назначения- ДТ-75М, Т-150, Т-150К, Т-4А, Т-70С, К-701, используемые для выполнения работ в растениеводстве, за исключением возделывания пропашных культур. В агрегате с почвообрабатывающими машинами эти тракторы применяют на вспашке, при культивации, бороновании, посеве, снегозадержании, уборке зерновых и других культур;
универсально-пропашные — МТЗ-80, МТЗ-82, Т-40АМ, используемые в растениеводстве и животноводстве, в том числе для возделывания и уборки пропашных культур. Разновидность универсальных колесных тракторов— самоходное шасси Т-16М и его модификации;
специальные, применяемые для возделывания отдельных сельскохозяйственных культур (хлопка — МТЗ-80Х, чая — Т-16 ММЧ, винограда, хмеля), а также в зависимости от условий (горный, мелиоративный, болотоходный — ДТ-75Б).
По типу движителей
на колесные, передвигающиеся с помощью колесного движителя;
гусеничные, передвигающиеся с помощью гусеничного движителя;
полугусеничные, в которых используются колесные и гусеничные движители одновременно.
По типу остова
рамные — остов состоит из клепаной или сварной рамы, например ДТ-75М;
полурамные — остов образуется корпусом трансмиссии и двумя продольными балками (лонжеронами), привернутыми или приваренными к корпусу;
безрамные — остов образуется в результате соединения корпусов отдельных механизмов.
Колесные тракторы могут иметь два ведущих колеса, т. е. один ведущий мост, например МТЗ-80, и четыре ведущих колеса (два ведущих моста) для улучшения тяговых свойств и повышения проходимости, например, МТЗ-82 или Т-40АМ.
Колесный трактор по сравнению с гусеничным универсален, дешевле в изготовлении и эксплуатации. Однако на переувлажненных и рыхлых почвах он не столь эффективен в использовании, как гусеничный, так как давление на почву у последнего значительно меньше, чем у колесного, из-за большей опорной площади.
Компоновка тракторов
Компоновка трактора — относительное размещение основных агрегатов и рабочего оборудования трактора, отвечающее его функциональному назначению и позволяющее использовать трактор с наибольшей эффективностью. Компоновка подчинена функциональному назначению трактора и характеризуется размерами и типом движителей, расположением агрегатов и систем, наличием свободного пространства для навески машин, орудий и установки технологических емкостей, базой, величиной дорожного и агротехнического просветов, координатами центра масс.
Компоновка сельскохозяйственных тракторов подразделяется на традиционную и нетрадиционную.
Колесные тракторы. Универсально-пропашные и универсальные колесные тракторы имеют наиболее распространенную традиционную (классическую) компоновку с передним расположением двигателя, последовательным рядным расположением агрегатов Трансмиссии, задним расположением кабины, управляемыми передними колесами с диаметром значительно меньше диаметра задних (рис. 2.1,а). Трансмиссию (сцепление, коробку передач и задний мост) выполняют в одном блоке и жестко соединяют с двигателем. При такой компоновке до 70…75% массы трактора в статическом положении приходится на задние ведущие колеса, которые обеспечивают тяговое усилие трактора, передние ведущие колеса (если их привод предусмотрен конструкцией) выполняют вспомогательную роль при работе на влажной рыхлой почве. Классическая компоновка доказала свою жизнеспособность благодаря ряду преимуществ: — относительная простота конструкции; — максимальное использование силы тяжести трактора при заднем ведущем мосте; — хорошая обзорность прицепных или навешенных сзади орудий; — хорошая маневренность, благодаря возможности поворота передних управляемых колес меньшего размера на большие углы; — высокий агротехнический просвет и др. Такую компоновку имеют все тракторы России и стран СНГ классов (),()… 1,4 (Т-25А; Т-30А80; ЛТЗ-55; ЮМЗ-6; МТЗ-80/82; МТЗ-100/102). За последние годы классическая компоновка претерпела модернизацию. Появилась так называемая улучшенная классическая компоновка (рис. 2.1,6). Отличие данной компоновки трактора от классической состоит в следующем: — увеличена доля массы трактора, приходящейся на передний ведущий мост с 25…30% до 35…40%;
Рис. 2.1. Типы компоновок колесных сельскохозяйственных тракторов: а — классическая, б — улучшенная классическая, в — с шарнирной рамой, г — тракторное самоходное шасси; д — трактор со свободным обзором; е — несущее самоходное шасси; ж и з — интегральные тракторы
— увеличен типоразмер шин передних ведущих колес; — передний портальный мост заменен на более мощный автомобильного типа; — угол поворота передних управляемых колес для повышения маневренности увеличен до 50…55°; — устанавливается переднее навесное устройство. Такую компоновку имеет трактор ВТ-170 класса 3, разработанный НАТИ совместно с ВгТЗ. Колесные сельскохозяйственные тракторы общего назначения 4К46 (рис. 2.1,в) имеют переднее расположение двигателя, кабина размещена за двигателем (ближе к середине колесной базы), передние и задние колеса одинакового размера и грузоподъемности, жесткую или шарнирно сочлененную раму. За кабиной имеется свободное пространство для установки емкостей или другого технологического оборудования. На передний мост приходится 55…60% массы трактора. Такую компоновку имеют тракторы класса 3 и 5 (Т-150К, Т-151К, К-701М, К-734. К-744). Нетрадиционной компоновкой отличаются самоходные шасси, I рак горы со свободным обзором, интегральные тракторы.
Самоходные шасси (рис. 2.1,г) по компоновке занимают Особое место среди универсальных тракторов. Тракторное самоходное Шасси характеризуется тем, что двигатель, трансмиссия, пост управления с кабиной образуют единый блок, расположенный над задним мостом шасси, передняя часть представляет свободную раму для установки кузова или навески машин и орудий. Для самоходных шасси Т-16МГ, выпускаемых Харьковским заводом тракторных самоходных шасси, характерно заднее расположение двигателя за кабиной, а для шасси, выпускаемых фирмой Фендт (Германия), — горизонтальное расположение двигателя перед кабиной в межбазовом пространстве.
Тракторы со свободным обзором (рис. 2.1,д) предложены фирмой Фендт в начале 90-х г. как промежуточная компоновки между самоходным шасси и интегральным трактором, направленная на увеличение роли переднего ведущего моста в реализации тягового усилия, ни увеличение массы орудий, навешиваемых спереди.
Несущее многоцелевое самоходное шасси (рис. 2.1,е) предназначено для агрегатирования с уборочными машинами (силосоуборочным и свеклоуборочным комбайнами и др.) и орудиями общего назначения (передне- и задненавесной плуги, культиваторы), что увеличивает его годовую загрузку. Рама шасси может быть цельной или Состоять из двух полурам, соединенных вертикальным шкворнем. Для улучшения управляемости шасси передняя полурама может быть выполнена несколько короче задней. Кабина имеет возможность перемещаться идоль продольной оси, что улучшает обзорность и облегчает навеску орудий и машин от почвообрабатывающих до уборочных. Модульная компоновка агрегатов двигателя и трансмиссии обеспечивает свободный доступ к ним для технического обслуживания и ремонта.
Интегральная компоновка (рис. 2.1,ж) появилась на современных моделях сельскохозяйственных тракторов. Основными ее признаки являются: — наличие трех зон свободного пространства (передней, средней, задней) для установки орудий или технологических емкостей; — наличие разветвленной системы ВОМ; — переднее или центральное расположение кабины с круговым обзором; — четыре ведущих и управляемых колеса одинакового размера; — наличие разветвленной гидросистемы управления орудиями; — реверсирование хода трактора; — высокие тягово-сцепные и транспортные качества; — необходимый запас мощности двигателя. Эта компоновка способствует более тесному функциональному объединению трактора с машинами и орудиями.
«Симметричная» интегральная компоновка (рис. 2.1,3) еще в большей степени отвечает требованиям по возможности агрегатирования трактора с машинами и орудиями.
Гусеничные тракторы. Гусеничные сельскохозяйственные тракторы общего назначения при традиционной (классической) компоновке имеют переднее расположение двигателя и сцепления. Коробка передач и задний мост расположены сзади и соединены с двигателем карданным валом (рис. 2.2,а). Кабина расположена сзади над ведущими колесами (звездочками). Такая компоновка обеспечивает в статике некоторое смещение центра давления вперед относительно середины опорных поверхностей гусениц и характерна для отечественных тракторов ДТ-75М, ДТ-175М и Т-4А.
У гусеничных тракторов традиционной компоновки возможно другое взаимное расположение агрегатов, когда двигатель, сцепление и коробка передач расположены в передней части трактора, а крутящий момент к заднему ведущему мосту передается через карданные передачи (рис. 2.2,6).
Появившаяся в последние годы нетрадиционная компоновка гусеничного сельскохозяйственного трактора с треугольным гусеничным обводом обеспечивает смещение центра масс трактора вперед, более равномерное распределение давления по длине опорной поверхности при работе с нагрузкой на крюке, увеличение продольной устойчивости трактора, а, следовательно, снижение опасности подъема его передней части при высоких тяговых усилиях.
Специализированные тракторы. Компоновки специализированных сельскохозяйственных тракторов отличаются разнообразием, что объясняется специфическими условиями их работы и требованиями технологий тракторных работ.
Компоновка трактора-склонохода для работы поперек склона крутизной до 20° отличается автоматической стабилизацией остова трактора в вертикальном положении одним из трех способов: установкой колес относительно склона или поворотом корпусов конечных передач, выравниванием остова в вертикальном положении, а также стабилизацией бортов с помощью шарнирной рамы. Первый способ стабилизации остова осуществлен в конструкции трактора МТЗ-82К, третий — в горном самоходном шасси СШ25Г. В некоторых странах Западной Европы с развитым горным земледелием (Австрия, Швейцария и др.) получили распространение тракторы-шасси для заготовки сена и транспортных работ в высокогорных условиях. Эти тракторы имеют компоновку с низким расположением центра масс, с увеличенной колеей и широкопрофильными шинами малого диаметра.
Портальная компоновка колесного и гусеничного тракторов характеризуется тем, что их рамы образуют огибающий один или два рядка растений достаточно высокий портал, на котором установлен пост управления с кабиной или без нее.
Рис. 2.2. Расположение агрегатов в гусеничном сельскохозяйственном тракторе классической компоновки: 1 — двигатель; 2 — вентилятор; 3 — выхлопная труба; 4 — радиатор; 5 — сцепление; 6 — карданная передача; 7 — коробка передач; 8 — задний мост; 9 — навесная система; 10 — воздухозаборник; 11- редуктор ВОМ
Компоновка промышленных тракторов отличается большим раз-;ообразием и определяется назначением и условиями работы машины.
Тракторы общего назначения. Традиционная компоновка гусеничного промышленного трактора общего назначения характеризуется передним расположением дви-ГШтеля, средним — кабины и задним — агрегатов заднего моста. Все сборочные блоки установлены на раме или полураме, к передней части которой крепят ось шарнира балансирной балки или рессоры, концами опирающейся на рамы гусеничных тележек. Тракторы с такой компоновкой оснащены защитными каркасами (устройствами, защищающими тракториста соответственно при опрокидывании трактора и от падающих предметов) или кабинами с защитными каркасами. Подобную компоновку имеют отечественные промышленные тракторы Т-130М, Т-170М, Т-10, атакже их зарубежные аналоги.
Компоновка промышленного трактора с треугольным гусеничным обводом (рис. 2.3) предложена вначале для тяжелых тракторов, затем для промышленных тракторов средней мощности и для сельскохозяйственных общего назначения. Треугольный обвод гусениц обеспечивает ряд преимуществ: — конечные передачи и механизм поворота не подвержены воздействию вертикальной ударной нагрузки, вызываемой контактом ведущего колеса с почвой; — центр масс смещен ближе к передней части машины, что облегчает заглубление отвала бульдозера; — наличие увеличенной опорной поверхности сзади за осью ведущего колеса предотвращает подъем передней части трактора при больших тяговых нагрузках.
Рис. 2.3. Компоновка тракторов с треугольным гусеничным обводом: 1 — отвал бульдозера; 2 -гидроцилиндры, 3 — радиаторы и вентилятор; 4 — механизм поворота и конечные передачи, 5 — центральная передача, б — коробка передач, 7 — карданный вал; 5 — гидротрансформатор; 9 — двигатель
При такой компоновке применен блочно-модульный принцип построения сборочных единиц (рис. 2.4), т.е. все основные узлы (двигатель, коробка передач, механизм поворота, конечные передачи) выполнены в виде отдельных легко демонтируемых и монтируемых модулей.
Специализированные тракторы. Компоновка гусеничного трактора-погрузчика отличается от трактора общего назначения увеличенной базой за счет введения дополнительного опорного катка, установки жесткой или балансирной балки вместо рессоры и выполнения рамы трактора как одно целое с порталом погрузочного оборудования. Для создания противовеса массе ковша с грузом в колесных тракторах-погрузчиках (рис. 2.5), выполненных с шарнирной рамой, двигатель, коробку передач и раздаточную коробку устанавливают на задней полураме, а портал погрузчика — на передней. Гидротрансформатор крепят к двигателю или выполняют в блоке с коробкой передач. Кабину размещают на передней или задней полураме. В первом случае упрощается управление ковшом, а во втором — управление двигателем и трансмиссией.
Конструктивной особенностью болотоходных такторов являются увеличенные размеры движителя из-за уширении гусеницы и увеличения продольной базы, например, за счет принудительного опускания направляющего колеса. Компоновка подземного трактора (рис. 2.6) для работы в стесненных условиях горных разработок отличается: малыми размерами по высоте; вынесенным за пределы колесной базы двигателем; шарнирной рамой. Для управляемого по радио земноводного трактора, работающего на глубине 6… 7 м, типичным является отсутствие кабины, герметизация агрегатов и узлов, наличие мачты с системой забора воздуха, необходимого для работы двигателя.
Рис. 2.6. Компоновка колесного подземного трактора: 1 — двигатель, 2,6 — карданные передачи; 3 — гидротрансформатор, 4 — коробка передач, 5, 7 — центральные и конечные передачи
Гусеничные лесопромышленные (трелевочные) тракторы (рис. 2.7), получившие широкое распространение в России и странах СНГ, имеют ряд компоновочных особенностей. Переднее расположение кабины обусловлено требованием передней обзорности, необходимостью иметь площадку для установки различного технологического оборудования и размещения перемещаемой пачки хлыстов за кабиной. Ходовая система с катками большого диаметра в сочетании с рычажно-балансирной подвеской, увеличенным дорожным просветом, высоко приподнятыми передними направляющими и задними ведущими колесами обеспечивает возможность преодоления препятствий при движении по лесному бездорожью. Нижняя часть рамы закрыта днищем, предотвращающим возможность проникновения к двигателю и другим агрегатам трактора сучьев, порубочных остатков и других предметов. Наличие технологической площадки сзади и сбоку кабины позволяет осуществлять протяжку деревьев при обрезке сучьев. Смещение центра масс трактора вперед позволяет устанавливать на площадке за кабиной челюстной погрузчик. Трелевочные тракторы с такой компоновкой были разработаны и освоены на АО «Онежский тракторный завод» (ТДТ-55, ТДТ-55А, ТЛТ-100, ТБ-1 и его модификации), на АО «Алтайский тракторный завод» (ТТ-4, ТТ-4М). За рубежом трелевочные тракторы с гусеничным движителем используется крайне редко и в основном на специализированных валочно-пакетирующих машинах.
Рис. 2.7. Компоновки гусеничных трелевочных тракторов: а — со щитом; 6 — с челюстным погрузчиком, 1 — толкатель, 2 — кабина, 3 — двигатель; 4 -Пфбедка, 5 — коробка передач; 6 — карданный вал; 7 — задний мост, 8 — ведущее колесо, 9 — гидроманипулятор
Компоновка лесопромышленного трактора для лесосплавных работ (рис. 2.8) приспособлена для движения по воде с помощью водометного движителя и по суше — с помощью гусеничного движителя. Трактор оборудован лебедкой 4, бревнотолкателем / или бульдозером с гидроза-хнатом грузоподъемностью до 1,5 т. Среднее давление на грунт на обычных гусеницах составляет 0,041 МПа, а на уширенных — 0,027 МПа.
Колесные лесопромышленные тракторы в нашей стране получили ограниченное распространение. Их создают на базе тракторов 4К46, имеющих свободное пространство за кабиной.
Рис. 2.8. Компоновка гусеничного трактора для лесосплавных работ: 1 — бревнотолкатель; 2 — кабина; 3 — двигатель, 4 — лебедка; 5 — коробка передач; 6, 9 -карданные валы, 7 ведущий мост, 8 — ведущее колесо; 10 — вшгт водометного движителя
Условиям использования колесных лесопромышленных машин с различным технологическим оборудованием наиболее полно отвечают компоновки многоосных тракторов 4К46, 6К6, 8К8 (рис. 2.9), имеющие большую грузоподъемность, более высокие тяговые показатели и лучшую проходимость за счет меньшего, чем у тракторов традиционных компоновок давления на грунт и глубины колеи.
Лесохозяйственные тракторы работают с лесными плугами, культиваторами, корчевателями, лесопосадочными машинами, покровосдира-телями и фрезами, а также как трелевочные на рубке леса. Компоновка гусеничных лесохозяйственных тракторов общего назначения (рис. 2.10,а) практически не отличается от компоновки лесопромышленных тракторов и позволяет получить различные модификации, в том числе для работы на грунтах с малой несущей способностью. Лесохозяйственный трактор для выполнения лесомелиоративных работ (рис. 2.10,6) имеет увеличенную опорную поверхность за счет применения уширенных гусениц и опущенного ведущего колеса //, выполняющего роль дополнительного опорного катка. При этом среднее давление на грунт снижается с 0,053 до 0,026 МПа, что позволяет использовать трактор на переувлажненных грунтах, осушенных болотах и на целине с глубиной снежного покрова более 1 м.
Рис. 2.9. Компоновки колесных лесопромышленных тракторов с различным оборудованием на базе тракторов 4К4 и 6К6: а — базовая модель 4К46. б, в — трелевочные тракторы 4К46 с; пачковым захватом и с гросочекерной оснасткой соответственно; г — базовая модель 6К6, д — трелевочный Грактор 6К6 с гидроманипулятором и коником; е — валочно-трелевочная машина 6К6 с I плроманипулятором и коником; ж — сучкорезно-раскряжевочная машина 6К6, з — сор-шментовоз 6К6 с гидроманипулятором
1.2. Типаж тракторов
Типаж тракторов
— это минимальный технически обоснованный ряд выпускаемых промышленностью или намеченных к выпуску тракторов, необходимых народному хозяйству. Классификационный показатель типажа тракторов — тяговый класс.
Каждый класс содержит одну основную (базовую) модель трактора и несколько ее разновидностей (модификации), которые используют для выполнения специальных работ. Любая модификация представляет собой видоизмененную модель базового трактора, сохраняющую его основные сборочные единицы, т. е. имеющую высокую степень унификации, что позволяет быстро, с наименьшими затратами создавать машины, которые дешевле и проще в эксплуатации. Типаж сельскохозяйственных тракторов включает в себя десять тяговых классов, которым соответствуют номинальные тяговые усилия:
Тяговый класс Номинальное тяговое усилие, кН
Тракторы тягового класса 0,2
— маломощные, колесные. К ним относится трактор Т-08 (Т-0,10), предназначенный для работы на небольших участках, в садах и огородах индивидуального и коллективного пользования, в личных подсобных хозяйствах и на школьных участках. Трактор оснащен карбюраторным двигателем воздушного охлаждения мощностью 5,9 кВт (8л. с.). Масса трактора 550 кг.
К этому же классу относится трактор АМЖК-8, который можно использовать для механизации работ по уходу за домашними животными, приготовлению кормов и на транспортных работах.
Тракторы тягового класса 0,6
— колесные, универсально-пропашные. К ним относится трактор Т-25А, предназначенный для работы в садоводстве, полеводстве и на животноводческих фермах. Имеет двигатель воздушного охлаждения мощностью 18,4 кВт с пуском от электрического стартера. Ширина колеи 1100. 1500 мм, агротехнический просвет 450. 657 мм; скорость движения 0,9. 21,9 км/ч; масса 1650кг. К этому же классу относятся тракторы Т-25К (модификация Т-25А), Т-30, Т-ЗОА, а также ряд самоходных шасси (СШ-28, Т-16МГ), которые при установке на них самосвальной платформы используют на транспортных работах.
Требования
Для производства надежной трансмиссии заводы-изготовители должны придерживаться требований нормативных документов. К основным относят следующие:
- Обеспечение надежной связи с двигателем.
- Возможность для изменения общего передаточного числа в зависимости от смены тягового сопротивления движению трактора.
- Возможность для изменения направления вращения ведущих колес в случае, если направление вращения вала двигателя остается неизменным. Такие ситуации возникают, когда требуется организовать движение транспорта задним ходом.
- Обеспечение отбора части мощности двигателя.
- Компактные габариты корпусов сборочных единиц, посредством работы которых удается передать большие мощности и обеспечить высокий КПД работы различных систем.
Производимые трансмиссии для грузовых автомобилей отличаются долгим сроком службы и простой эксплуатацией, не требующей особого ухода.
Трансмиссия трактора – простой в работе механизм с большим количеством элементов и устройств, совместное действие которых приводит к безопасной и надежной поездке транспортного средства.
В большинстве колесных и гусеничных тракторов соблюдается одинаковый принцип работы механизмов и систем автомобильного транспорта. Производители подобных автомобилей за счет использования особого ряда конструкций и элементов обеспечивают удобное передвижение техники и предоставляют возможности для выполнения различных задач, которые неподвластны легковым автомобилям.
Трансмиссия – важная часть любого трактора. Основная задача этого механизма в передаче и преобразовании полученной энергии потребителю. При этом с помощью работы трансмиссии удается организовать максимально удобную и простую передачу, за счет чего управление грузовым транспортом становится в разы проще.
Ходовая часть гусеничных тракторов
Назначение ходовой части и ее основных элементов (остова, движителя и подвески) гусеничных тракторов такое же, как и колесных. На гусеничных тракторах в подавляющем большинстве применяются остовы рамной конструкции.
Гусеничный движитель
(рис. 9.8) включает в себя: ведущую звездочку 5, гусеничную цепь
4,
опорные катки
6,
направляющее колесо
1
с натяжным устройством
2
и поддерживающие ролики
3.
Звездочка 5 приводит в действие гусеничную цепь
4
и обеспечивает движение трактора. Гусеничная цепь
4
состоит из звеньев, соединенных шарнирно с помощью пальцев. Она огибает звездочку 5, направляющее колесо
1,
опорные катки
6
и поддерживающие ролики
3,
образует замкнутый контур, называемый гусеничным обводом. Вес трактора через опорные катки
6
распределяется на опорную часть гусеницы. При этом среднее условное давление на грунт небольшое, а сцепление с ним хорошее.
Гусеничная цепь
снабжена почвозацепами и служит дорожкой для качения по ней остова трактора. Ролики
3
поддерживают гусеничную цепь и удерживают ее от бокового раскачивания во время движения трактора.
Направляющее колесо 1
и натяжное устройство
2
предназначены для обеспечения правильного направления движению гусеничной цепи
4,
ее натяжения и амортизации гусеничного движителя.
Гусеничный движитель работает следующим образом. Ведущий момент, приложенный к звездочкам 5, заставляет гусеничные цепи 4
перематываться и расстилаться под опорными катками
6.
При этом возникающие от взаимодействия гусеницы с грунтом касательные реакции передаются остову и приводят трактор в движение, заставляя опорные катки
6
перекатываться по внутренним беговым дорожкам цепи
4
как по рельсам.
К преимуществам гусеничного движителя можно отнести высокие сцепные качества и проходимость, низкое среднее давление на грунт. Вместе с тем гусеничные тракторы уступают колесным по массе, ско-
Рис. 9.8. Гусеничный движитель:
- 1 — направляющее колесо; 2—
натяжное устройство; - 3 — поддерживающие ролики; 4
— гусеничная цепь; 5 — ведущая звездочка;
6
— опорные катки; 7— пружина балансиров подвески; - 8— внутренний балансир; 9—
шарнир;
10—
внешний балансир
роста движения, универсальности использования в сельском хозяйстве. К основным требованиям, предъявляемым к гусеничным тракторам, можно отнести: высокую плавность хода, хорошее сцепление с грунтом, малое среднее давление на него, самоочищаемость гусениц, меньший шум. Плавность хода и снижение шума приобретают важное значение в связи с ростом скоростей движения.
По типу направляющих устройств подвески гусеничных тракторов
подразделяются на жесткие, полужесткие и упругие (эластичные).
Жесткая подвеска
упругих элементов не имеет, оси опорных катков жестко прикреплены к гусеничным тележкам, которые в свою очередь жестко соединены с остовом трактора. Такой тип подвески применяется на тихоходных тракторах специализированного назначения (трубоукладчики, погрузчики).
Полужесткая подвеска
(рис. 9.9) представляет собой гусеничную тележку, выполненную из балок различного сечения, на которых устанавливают все элементы движителя. Рама
4
тележки соединяется с остовом трактора
1
сзади шарниром
3;
впереди на нее опирается остов через упругий элемент
2
(тракторы Т-130, Т-402). Название подвески — полужесткая — связано с тем, что в момент наезда движителя на препятствие одной или двумя гусеницами сразу происходит их упругое угловое перемещение относительно задних шарниров крепления тележек к остову трактора и последний «мягко» наезжает на препятствие. Однако по мере его пересечения остов поднимается на всю его высоту и резко (жестко) сходит с него, что сопровождается возникновением динамических нагрузок во всем тракторе.
Классификация трансмиссий по преобразованию передаточного числа
Наиболее востребованными в тракторах являются ступенчатые трансмиссии. Они отличаются удобством использования, неприхотливостью в обслуживании и небольшой ценой. Некоторые производители выпускают дополнительный вид трансмиссий, отличием которых является измененное значение передаточного числа. В зависимости от величины этого показателя выпускаемые трансмиссии делят на комбинированную, ступенчатую и бесступенчатую.
Стоит рассмотреть особенности каждой более подробно:
- Ступенчатая трансмиссия. Предполагает наличие специальных интервалов передаточного числа, в которые трактор выдает максимальную мощность. При этом расход топлива и энергии не повышается.
- Бесступенчатая трансмиссия. Выдает определенно заданные интервалы передаточного числа, за счет которых удается изменить положение механизмов. Преимущество такой системы в том, что от владельца авто не требуется усилие для выбора оптимального соотношения экономичности и мощности трактора.
- Комбинированная трансмиссия. Сочетает в себе бесступенчатую и ступенчатую передачу. Механизм получает плюсы от каждого вида и при этом контролирует мощность, что обеспечивает экономное использование.
Вне зависимости от вида трансмиссии механизмы, которые устанавливают в тракторах, отличаются от тех, что используют в легковых автомобилях, отличаются количеством потоков передачи механической энергии от двигателя. Если в легковом транспорте всего один поток, то в грузовом их величина достигает трех.
Гидрообъемные
Работа таких трансмиссий основана на принципе передачи энергии с помощью жидкости, которая перемещается под давлением. При этом ни крутящий момент, ни рабочее усилие не зависит от того, с какой скоростью эта жидкость движется.
В гидрообъемных трансмиссиях устанавливают две гидравлические машины, которые соединяют между собой с помощью специальных трубопроводов:
- объемный гидронасос, где происходит преобразование крутящего механического потока энергии в поступательный поток;
- гидромотор.
Преимуществом подобных механизмов является бесступенчатое регулирование крутящего момента в широком диапазоне значений. Передача момента на колеса происходит плавно. Дополнительно владелец авто получает возможность для реверсирования хода и оперативного торможения передних колес без использования дополнительных устройств.
Особенность трансмиссии гусеничного трактора
Для работы трактора на гусеничном ходу производители задействуют иной вид трансмиссии, в которой предусмотрено наличие двух больших гидравлических передач. При этом на каждой передаче дополнительно установлен регулируемый насос и гидравлический мотор, обеспечивающий работу системы.
Конструкция гидравлического насоса обеспечивает надежное соединение устройства с двигателем. Во время установки агрегата гидравлические моторы в передачах соединяют с ведущими звездочками, которые крепятся к зубчатому механизму.
Введение
Сельскохозяйственная техника — широкий спектр технических средств, предназначенных для повышения производительности труда в сельском хозяйстве путем механизации и автоматизации отдельных операций или технологических процессов.
Производителями сельскохозяйственной техники являются такие фирмы как Claas (Германия, производит Зерноуборочные комбайны, Deere & Company (США, производит тракторы и комбайны), Гомсельмаш (силосоуборочные, свеклоуборочные, зерноуборочные комбайны, жатки), Zetor (чеш. Zetor Чехия, трактора).
В России выпуском зерноуборочных комбайнов занимаются Красноярский завод комбайнов, Ростсельмаш.
Стремление к повышению производительности сельскохозяйственных машин, на сегодняшний день, привело к созданию экономичных и многофункциональных единиц техники, позволяющих механизировать практически любой сельскохозяйственный процесс.
К слову, сельскохозяйственная техника является одной из самых наиболее часто совершенствуемых в угоду техническому прогрессу и потребностям сельхозпроизводства. Ежегодно ведутся практические исследования и внедрение новых образцов сельскохозяйственных машин, разрабатываются системы автоматического управления сельхоз. агрегатами, оригинальные приводы уборочных машин, модернизируются наиболее прогрессивные виды техники, внедряются ресурсосберегающие технологии. И все же наибольшим спросом у сельхозпредприятий стабильно пользуется сельскохозяйственная техника на основе отечественных и импортных тракторов. Преимущества её неоспоримы именно потому, что огромный выбор навесного и прицепного оборудования позволяют из единицы тракторной техники быстро переоборудовать сельскохозяйственную машину различного назначения.
Классификация трансмиссий по преобразованию передаточного числа
Наиболее востребованными в тракторах являются ступенчатые трансмиссии. Они отличаются удобством использования, неприхотливостью в обслуживании и небольшой ценой. Некоторые производители выпускают дополнительный вид трансмиссий, отличием которых является измененное значение передаточного числа. В зависимости от величины этого показателя выпускаемые трансмиссии делят на комбинированную, ступенчатую и бесступенчатую.
Стоит рассмотреть особенности каждой более подробно:
- Ступенчатая трансмиссия. Предполагает наличие специальных интервалов передаточного числа, в которые трактор выдает максимальную мощность. При этом расход топлива и энергии не повышается.
- Бесступенчатая трансмиссия. Выдает определенно заданные интервалы передаточного числа, за счет которых удается изменить положение механизмов. Преимущество такой системы в том, что от владельца авто не требуется усилие для выбора оптимального соотношения экономичности и мощности трактора.
- Комбинированная трансмиссия. Сочетает в себе бесступенчатую и ступенчатую передачу. Механизм получает плюсы от каждого вида и при этом контролирует мощность, что обеспечивает экономное использование.
Вне зависимости от вида трансмиссии механизмы, которые устанавливают в тракторах, отличаются от тех, что используют в легковых автомобилях, отличаются количеством потоков передачи механической энергии от двигателя. Если в легковом транспорте всего один поток, то в грузовом их величина достигает трех.
Гидрообъемные
Работа таких трансмиссий основана на принципе передачи энергии с помощью жидкости, которая перемещается под давлением. При этом ни крутящий момент, ни рабочее усилие не зависит от того, с какой скоростью эта жидкость движется.
В гидрообъемных трансмиссиях устанавливают две гидравлические машины, которые соединяют между собой с помощью специальных трубопроводов:
- объемный гидронасос, где происходит преобразование крутящего механического потока энергии в поступательный поток;
- гидромотор.
Преимуществом подобных механизмов является бесступенчатое регулирование крутящего момента в широком диапазоне значений. Передача момента на колеса происходит плавно. Дополнительно владелец авто получает возможность для реверсирования хода и оперативного торможения передних колес без использования дополнительных устройств.
Особенность трансмиссии гусеничного трактора
Для работы трактора на гусеничном ходу производители задействуют иной вид трансмиссии, в которой предусмотрено наличие двух больших гидравлических передач. При этом на каждой передаче дополнительно установлен регулируемый насос и гидравлический мотор, обеспечивающий работу системы.
Конструкция гидравлического насоса обеспечивает надежное соединение устройства с двигателем. Во время установки агрегата гидравлические моторы в передачах соединяют с ведущими звездочками, которые крепятся к зубчатому механизму.
Что такое трансмиссия и как она работает — фото видео.
Когда каждый человек еще в детстве начинает интересоваться автомобилями, он изучает не только марки и моделей машин, но и устройство автомобиля. Одним из главных агрегатов автомобиля является трансмиссия, которая состоит из множества более мелких узлов и агрегатов. В данной статье мы расскажем всем интересующимся молодым автомобилистам, что такое трансмиссия в автомобиле.
Определение понятия «трансмиссия»
Согласно научным изданиям машиностроения, трансмиссия – это совокупность механизмов и сборочных единиц, которые соединяют двигатель с ведущими колесами, в данном случае, автомобильного транспорта, а также совокупность системы, которая обеспечивает работу трансмиссии.
Трансмиссия является совокупностью агрегатов и узлов, которые передают крутящий момент от мотора к ведущим колесам, при этом могут изменяться тяговые усилия, скорость и направление движения. Автомобильная трансмиссия включает в себя механизмы, которые в науке относят к составу силового агрегата – это коробка передач и сцепление.
Назначение и схемы трансмиссий
Назначение. Трансмиссия автомобиля служит для передачи крутящего момента от двигателя к ведущим колесам. При этом передаваемый крутящий момент изменяется по величине и распределяется в определенном соотношении между ведущими колесами.
Крутящий момент на ведущих колесах автомобиля зависит от передаточного числа трансмиссии, которое равно отношению угловой скорости коленчатого вала двигателя к угловой скорости ведущих колес. Передаточное число трансмиссии выбирается в зависимости от назначения автомобиля, параметров его двигателя и требуемых динамических качеств.
В трансмиссию входят:
- сцепление,
- коробка передач,
- карданная передача,
- главная передача, устанавливаямая в картере ведущего моста,
- дифференциал
- полуоси.
Сцепление позволяет на непродолжительное время отсоединить трансмиссию от двигателя и обеспечивает плавное включение трансмиссии при трогании автомобиля с места или при переключении передач.
Коробка передач служит для получения различных тяговых усилий на ведущих колесах путем изменения крутящего момента, передаваемого от двигателя к карданному валу, а также для изменения направления вращения ведущих колес при движении задним ходом и для отключения трансмиссии от двигателя на длительное время.
Карданная передача позволяет передавать крутящий момент от выходного вала коробки передач к заднему мосту при изменяющемся (при движении автомобиля) угле между осями вала коробки передач и ведущего вала главной передачи.
Главная передача служит для того, чтобы передать крутящий момент под углом 90 градусов от карданного вала к полуосям, а также для уменьшения числа оборотов ведущих колес по отношению к числу оборотов карданного вала. Уменьшение частоты вращения механизмов трансмиссии после главной передачи приводит к увеличению крутящего момента и, соответственно, увеличивает силу тяги на колесах.
Дифференциал обеспечивает возможность вращения правого и левого ведущих колес с разными скоростями на поворотах и неровной дороге. Две полуоси, связанные с дифференциалом через полуосевые шестерни, передают крутящий момент от дифференциала к правому и левому ведущим колесам. Дифференциалы, устанавливаемые между приводами колес ведущей оси, называют межколесными, между разными осями — межосевыми (в полноприводных трансмиссиях).
Трансмиссии по способу передачи крутящего момента разделяют на механические, гидравлические, электрические и комбинированные (гидромеханические, электромеханические). На отечественных автомобилях наиболее распространены механические трансмиссии, в которых передаточные механизмы состоят из жестких недеформируемых элементов (металлических валов и шестерен). На автобусах Ликинского и Львовского заводов, а также на большегрузных автомобилях БелАЗ применяют гидромеханические трансмиссии с автоматизированным переключением передач. Часть большегрузных автомобилей БелАЗ имеют электромеханическую трансмиссию с моторколесами.
Схема трансмиссии автомобиля. Она определяется его общей компоновкой: размещением двигателя, числом и расположением ведущих мостов, видом трансмиссии.
Схемы трансмиссий:
а — автомобиля 4X2, б — переднеприводного автомобиля 4X2, в — автомобиля 4X4, г — автомобиля 6X4
Автомобили с механической трансмиссией и колесной формулой 4X2 имеют чаще всего переднее расположение двигателя, задние ведущие колеса и центральное размещение агрегатов трансмиссии (автомобили ЗИЛ-130, МАЗ-5335, ГАЗ-24 и др.). Здесь двигатель 1, сцепление 2 и коробка передач 3 (рис. а) объединены в один блок и образуют силовой агрегат. Крутящий момент от коробки передач 3 передается карданной передачей 4 на ведущий задний мост 5.
Существенные отличия имеет трансмиссия переднеприводного автомобиля ВАЗ-2108 с колесной формулой 4X2 (рис. 6). Особенностью этой схемы является выполнение ведущим переднего моста с управляемыми колесами. Это потребовало объединения в единый силовой агрегат двигателя 1, сцепления 2, коробки передач 3, механизмов ведущего моста 5 (главную передачу и дифференциал), карданных шарниров 6 равных угловых скоростей, соединенных с передними управляемыми колесами.
На (рис. в) представлена схема трансмиссии автомобиля с передним и задним ведущими мостами (автомобиль УАЗ-469). Отличительной особенностью этой схемы является применение в трансмиссии раздаточной коробки 7, которая через промежуточные 9 карданные валы передает крутящий момент переднему 8 и заднему 5 ведущим мостам. В раздаточной коробке имеется устройство для включения и выключения переднего моста и дополнительная понижающая передача, позволяющая значительно увеличить крутящий момент на колесах автомобиля в необходимых случаях.
Схема механической трансмиссии трехосных грузовых автомобилей КамАЗ представлена на (рис. г). На этих автомобилях средний 10 и задний 5 мосты являются ведущими. Крутящий момент к ним передается одним карданным валом 4, а в главной передаче среднего моста предусмотрен межосевой дифференциал и проходной вал, передающий крутящий момент на карданный вал 11 привода заднего моста. В других схемах трансмиссий трехосных автомобилей передача крутящего момента к ведущим мостам может производиться раздельно карданными валами от раздаточной коробки (автомобиль Урал-375).
Схемы гидромеханических трансмиссий предусматривают объединение в едином блоке двигателя и гидромеханической коробки передач, крутящий момент от которой передается ведущим колесам через карданный вал и механизмы заднего моста как в обычной механической трансмиссии.
На автомобилях (БелАЗ) с электромеханической трансмиссией дизельный двигатель приводит во вращение генератор постоянного тока, энергия от которого передается по проводам в электродвигатели колес. Колесный электродвигатель монтируют в ободе колеса совместно с понижающим механическим редуктором. Такая конструкция называется электромотор-колесом.
Классификация трансмиссий
Рассмотрим классификацию трансмиссий.
По методам передачи и преобразованию момента трансмиссии подразделяются на электромеханические, механические и гидромеханические.
Механическая трансмиссия
Трансмиссии механического типа (обычные и планетарные) в КПП содержат только фрикционные и шестеренчатые устройства. Преимущества их заключаются в коэффициенте полезного действия, небольшой массе и компактности, простоте в эксплуатации и надежности в работе. Недостаток трансмиссии такого типа – ступенчатость изменения передаточных чисел, понижающая использование мощности силового агрегата. Длительное время на переключение рычагом передач усложняет управление автомобилем. Именно поэтому спортивные автомобили, оснащенные механической трансмиссией, снабжают электронными переключателями передач (кнопками на рулевом колесе, подрулевыми лепестками) и КПП со сверхбыстрыми синхронизирующими сервомеханизмами.
Использование трансмиссий механического типа свойственно советскому тракторостроению.
Гидромеханическая трансмиссия
Трансмиссии гидромеханического типа оснащены гидромеханической КПП, которая состоит из механического редуктора и гидродинамического преобразователя момента. Преимущества таких трансмиссий заключаются в возможности автоматизации смены передачи и облегчении управления, автоматическом изменении крутящего момента на основе внешних сопротивлений, фильтрации крутильных колебаний и уменьшении пиковых нагрузок, действующих на агрегаты трансмиссии, и увеличении за счет этого долговечности и надежности трансмиссии поршневого мотора.
Главный недостаток таких трансмиссий – достаточно низкий коэффициент полезного действия из-за недостаточно большого КПД гидротрансформатора. Если КПД гидропередачи не меньше 0.8, диапазон изменения крутящего момента не выше трех, что заставляет иметь механический редуктор на 3-5 передач, включая передачу заднего хода. Необходимо располагать специальной системой охлаждения, а также подпитки гидроагрегата, что увеличивает габаритные размеры моторно-трансмиссионного отдела. Без фрикционов или специальных автологов пуск двигателя с буксира и торможением двигателем не обеспечивается.
Трансмиссии гидромеханического типа активно применяются в западном тракторостроении – «Леопард-2» (ФРГ), М1 «Абрамс» (США). В трансмиссиях перечисленных танков в основном приводе, кроме гидромеханических передач, также применяются в дополнительном приводе гидростатические передачи для выполнения поворота. Гидромеханической передачей оснащен дизель-поезд под названием Д1 венгерского производства, работающий на постсоветском пространстве ЖД-техники.
Гидравлическая трансмиссия
Трансмиссией гидравлического типа в транспортной технике является такая трансмиссия, в которой переключения осуществляются не механическим методом, а гидравлическими аппаратами, т.к. чисто гидравлические трансмиссии встречаются довольно редко. Трансмиссия такого типа оборудована КПП с вторичным и первичным валами, а также, как и в обычной КПП, несколькими парами зубчатых колес, но включение необходимой пары в рабочий процесс выполняет не фрикционная или кулачковая муфта, а гидромуфта или же гидротрансформатор, который заполняется для включения передачи.
Главное достоинство трансмиссии такого типа – включение передач совершенно безударное и полное отсутствие механических муфт, стабильно работающих в процессе передачи больших крутящих моментов (к примеру, на тепловозах), главный минус – необходимость монтажа отдельной гидромуфты для каждой передачи. Из-за своих особенностей гидропередача применяется в основном на железнодорожной технике. Из отечественных разновидностей техники гидропередачей оснащены, к примеру, дизель-поезд ДР1, маневровые тепловозы ТГМ6 и ТГМ4.
Гидростатическая трансмиссия
В трансмиссии гидростатического типа для передачи мощности применяется аксиально-плунжерные гидромашины. Преимущества данной трансмиссии – небольшая масса и габариты машин, отсутствие механической связи между ведущим и ведомым звеньями трансмиссии, благодаря чему удается разносить их на достаточно значительные расстояния и придавать гораздо большее число степеней свободы. Главный минус гидрообъемной передачи – высокие требования к чистоте жидкости, участвующей в рабочем процессе, а также повышенное давление в гидролинии.
Гидростатическая передача применяется на дорожно-строительных машинах (в основном в катках, так как там необходимо обеспечивать достаточно большое передаточное число, а также очень часто приводить вальцы с торца, затруднено построение механической передачи), как вспомогательная – в авиационной технике, металлорежущих станках, тепловозах.
Электромеханическая трансмиссия
Трансмиссии электромеханического типа состоят из тягового электромотора (или нескольких), электрического генератора, электрической системы контроля, а также соединительных кабелей. Главным достоинством трансмиссий электромеханического типа является обеспечение более широкого диапазона автоматического изменения силы тяги и крутящего момента, а также отсутствие кинематической жесткой связи между механизмами электротрансмиссии, что дает возможность создать разные компоновочные схемы.
Главными минусами, которые препятствуют распространению трансмиссий электрического типа, являются большая масса, габариты и цена (особенно если применяются электромашины постоянного тока), меньший КПД (по сравнению с механической). Но с развитием электротехнической промышленности, широким распространением индукторного, вентильного, синхронного, асинхронного и других разновидностей электропривода открывается все больше новых возможностей для электромеханических трансмиссий.
Данные трансмиссии широко используются в тепловозах, тракторах, карьерных самосвалах, морских судах, военной технике, самоходных механизмах, немецких военных машинах «Мышонок» и «Фердинанд», а также автобусах, которые с трансмиссией этой разновидности более правильно называются теплоэлектробусы, к примеру, ЗИС-154.
На современных автомобилях, по большей части, используется трансмиссия механического типа. Трансмиссия механического типа, в которой изменение крутящего момента происходит в автоматическом режиме, называется автоматической трансмиссией.
На этом классификацию трансмиссий можно считать рассмотренной.
Трансмиссия автомобиля Принцип работы трансмиссии
Урок 6 — трансмиссия, виды коробок передач, механическая, автоматическая, типтроник, вариатор
https://pro-traktor.ru/traktory/kolesnye.html
https://ltruck-service.ru/brend/shema-gusenichnogo-traktora.html