Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Содержание

Устройство автомобиля. Всё об автомобиле

Устройство автомобиля для чайников: разбираемся вместе

Изобретение автомобиля в корне изменило человеческую жизнь, причем как в положительную, так и в негативную сторону. На сегодняшний день автомобиль – это не только средство передвижения, но и показатель статуса и положения в обществе.
Практически каждая семья имеет в своем распоряжении хотя бы один автомобиль, а существуют и города, где автомобилей уже давно больше чем людей.

Для того, что бы понимать, как управлять транспортным средством и как правильного его эксплуатировать нужно, знать, по крайней мере, из чего оно состоит и как работает. Каждый владелец автомобиля не раз интересовался устройством своего железного коня. Для некоторых достаточно владение базовыми знаниями, а некоторые предпочитают изучить каждую деталь автомобиля. Конечно, для того, что бы охватить все нюансы устройства автомобиля потребуется, как минимум написать книгу, а вот для того, что бы понимать основу и знать элементарное, достаточно прочитать данную статью.

Возможно для кого-то устройство автомобиля – это высшая математика, но если потратить немного времени и вникнуть в суть, все достаточно просто. Теперь обо всем по порядку.

Итоги

Устройство автомобиля — это сложная система, на изучение которой уходят годы. Тем не менее общую схема и предназначение всех узлов может изучить и понять даже новичок. Эти знания могут помочь как в дороге, так и в обслуживании авто.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

1.1. Габаритные размеры автомобиля ВАЗ-2110

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

1.2. Габаритные размеры автомобиля ВАЗ-2111

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

1.3. Габаритные размеры автомобиля ВАЗ-2112

1.Основные узлы и системы

Несмотря на то, что сегодня существует огромное количество разных марок и моделей автомобилей, практически все они устроены по одному и тому же принципу. Речь идет о легковых транспортных средствах. Схема устройства автомобиля условно делиться на несколько частей:

• Кузов автомобиля или несущая конструкция. Сегодня кузов автомобиля является его основой, к которой крепятся практически все агрегаты и узлы. Кузов, в свою очередь, состоит из штампованного днища, передних и задних ланжеронов, крыши, моторного отсека и остальных навесных составляющих. Под навесными составляющими подразумевают двери, крылья, капот, крышку багажника и пр. Данное разделение достаточно условно, поскольку все детали автомобиля, так или иначе, связаны между собой;

• Ходовая часть автомобиля. Название говорит само за себя и предполагает, что ходовая часть состоит из множества узлов и агрегатов, с помощью которых автомобиль имеет возможность передвигаться. Ее основными составляющими принято считать переднюю и заднюю подвески, ведущие мосты и колеса. Также к ходовой части автомобиля относят раму, к которой также крепиться большинство агрегатов. Рама является предшественницей кузова.

• С помощью ведущих мостов нагрузка передается от рамы или кузова на колеса и наоборот. Что касается подвески, на многих автомобилях установлена подвеска по типу МакФерсон, которая значительно улучшает управление автомобилем. Существуют также независимые (каждое колесо по отдельности прикреплено к кузову) и зависимые (может быть в виде балки или ведущего моста, считается устаревшей) подвески;

• Трансмиссия автомобиля. Под трансмиссией автомобиля принято считать силовую передачу. Ее основной задачей является передача крутящего момента от коленчатого вала к ведущим колесам. В свою очередь, трансмиссия также состоит из нескольких частей, в частности из коробки передач, сцепления, карданной передачи, дифференциала, полуосей и главной передачи. Последние соединены со ступицами колес;

• Двигатель автомобиля. Основной задачей и предназначением двигателя является преобразование тепловой энергии в механическую. Далее данная энергия передается через трансмиссию на колеса автомобиля;

• Механизм управления. Собственно сам механизм управления состоит из тормозной системы и рулевой;

• Электрооборудование автомобиля. Ни один современный автомобиль не обходиться без электрики, основными частями которой являются аккумуляторная батарея, электропроводка, генератор переменного тока и система управления двигателем. Это только основные части автомобиля, каждая из которых предусматривает систему в системе и порой не одну. На некоторых частях стоит остановиться детальней.

Из чего состоит автомобиль

Любые легковые машины имеют в своем составе следующие компоненты:

  • двигатель
  • трансмиссия
  • ходовая часть
  • электрооборудование
  • кузов

Именно в таком порядке всегда рассматривается автомобиль в любом учебнике по автомеханике, и этому есть причина: эти узлы расположены в порядке значимости.

Двигатель

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Двигатель легкового автомобиля – главная его часть. Он приводит в движение само транспортное средство и попутно снабжает энергией обслуживающие агрегаты. Располагается двигатель почти всегда спереди, но иногда встречается и заднее его расположение (в основном на спортивных машинах). Самым распространенным на сегодня является двигатель внутреннего сгорания (ДВС) – в нем сгорает топливо, преобразуя тепловую энергию в кинетическую (вращение). Двигатели бывают бензиновыми, дизельными и газовыми. В этих трех случаях разница заключается только в типе используемого топлива и особенностях рабочего цикла мотора. Кстати, можно дизельный двигатель и на Ниву поставить. Есть еще автомобильные электрические двигатели, но их меньшинство, несмотря на несомненные плюсы.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Крутящий момент двигателя должен быть реализован максимально эффективно, ведь при медленной езде двигатель не может работать медленно, а при быстром движении – быстро. Трансмиссия преобразует скорость вращения двигателя, замедляя или ускоряя его. Трансмиссия – это сцепление, коробка передач и главная передача с дифференциалом.

Сцепление служит для того, чтобы механически разъединить колеса и двигатель, когда движение машины не требуется. Коробка передач позволяет ехать с разной скоростью при одних и тех же оборотах мотора. Она бывает механической (ручной) и автоматической. В первом случае передачи включаются самим водителем при помощи специального рычага, во втором передачи выбираются автоматически в зависимости от скорости езды и нагрузки на автомобиль. Второй вариант позволяет сделать управление проще, однако само устройство такого агрегата намного сложнее. Главная передача направляет крутящий момент непосредственно к колесам, а дифференциал позволяет им вращаться с разной скоростью (это нужно в основном в поворотах).

Также состав трансмиссии может меняться в зависимости от типа привода. Двигатель может вращать только передние, только задние или все колеса вместе. В первом случае вращение от главной передачи идет через полуоси сразу к передним колесам. Во втором случае (если двигатель спереди) в состав трансмиссии добавляется специальный карданный вал, ведущий к задним колесам через всю машину. На полноприводных автомобилях (джипах и кроссоверах) после коробки передач устанавливается еще одна, раздаточная коробка, которая распределяет вращение между передними и задними колесами.

Ходовая часть

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

В ее состав входят узлы, непосредственно связанные с движением – подвеска, колеса, тормозные механизмы. Подвеска автомобиля служит для сглаживания реактивных моментов, возникающих при проезде неровностей, иначе говоря, она делает езду мягче и плавнее. Кроме того, подвеска устраняет и уменьшает крены и наклон кузова при проезде поворотов, удерживая автомобиль в заданном горизонтальном положении. В состав подвески входят амортизаторы и пружины, а также различные рычаги и шарниры. От характеристик подвески зависит плавность хода и общее поведение на дороге. Тормозные механизмы служат для замедления движения и остановки автомобиля в различных ситуациях. Они расположены непосредственно рядом с колесами.

Электрооборудование

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Электрооборудование является очень важной системой оснащения. В наше время, когда электронных помощников все больше и больше, роль электрооборудования становится все выше. В самом общем варианте оно состоит из аккумулятора, генератора, систем зажигания, освещения, контрольных приборов. Так как различные системы потребляют очень много электричества, двигатель при своей работе вращает генератор, обеспечивающий всех потребителей, а также заряжает аккумулятор, который служит для запуска мотора.

Рекомендуем: Полная расшифровка маркировки автомобильных шин

Кузов

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Кузов – это, грубо говоря, металлическая коробка, в которую установлены все вышеперечисленные агрегаты. Кузов вместе с навесными деталями (двери, капот, крылья) формируют внешний облик автомобиля и защищают водителя, пассажиров и все узлы от атмосферных воздействий. Практически все современные легковые автомобили оснащаются несущими кузовами, т.е. на него установлены все составляющие, в отличие от грузовиков, например, где используется рама – специальный элемент, к которому крепится двигатель, кабина, кузов, подвеска и т.д. Использование несущего кузова позволяет значительно, на 10-20%!уменьшить общий вес.

Конечно, более полное представление об устройстве машины могут дать многочисленные картинки и книги, однако общих теоретических знаний в большинстве случаев вполне достаточно, чтобы понять, к примеру, что проблемы с электрооборудованием могут быть причиной того, что «троит двигатель», а стуки и грохот при проезде неровностей указывают на неисправности в подвеске. Поэтому устройство автомобиля для «чайников», несмотря на сложность систем и обилие автосервисов, в сложной ситуации всегда сможет помочь.

Автомобиль в двадцать первом веке уже вовсе не является роскошью. Скорее всего, это актуальная необходимость. Однако у большинства владельцев транспортных средств просто не хватает времени на скрупулёзное изучение его составных частей. Поэтому устройство автомобиля для «чайников» позволяет в кратчайшие сроки ознакомиться с принципиально важными моментами.

Наиболее просто схема устройства автомобиля выглядит так:

  • верхняя оболочка или ;
  • аппарат шасси (трансмиссия, управляющие механизмы, ходовой блок);
  • силовой агрегат, который является важнейшей частью машины.

Краткий обзор видов моторов

Прежде всего, стоит отметить, что двигатель и мотор это одно и то же. Мотором чаще называют двигатели внутреннего сгорания или электрические. Не секрет, что двигатель служит источником энергии для передвижения транспортного средства. Большинство автомобилей предусматривает наличие двигателей внутреннего сгорания, которые условно можно поделить на:

• Поршневые, в которых расширяющиеся газы во время сгорания топлива заставляют двигаться поршень, который в свою очередь приводит в движение коленчатый вал автомобиля;

• В роторных двигателях те же газы приводят в движение вращающуюся деталь, собственно ротор.

Если углубляться, существует большое количество типов и подтипов двигателей. По типу топлива двигатели можно разделить на дизельные, бензиновые, газобаллонные и газогенераторные.

Также есть газотурбинные двигатели внутреннего сгорания, электрические, орбитальные, ротативные, роторно-лопастные и пр. На сегодняшний день наиболее распространенным является поршневой двигатель внутреннего сгорания.

Несущая система автомобиля

Она является скелетом автомобиля, к которому в последующем крепятся все детали. Именно от нее зависит срок службы автомобиля, и именно на несущую систему приходятся все нагрузки, которым подвергается автомобиль во время движения. Отсюда и ценовое соотношение если определить стоимость всего автотранспорта в 100%, то 50% будет приходиться именно на эту систему. Условно ее можно разделить на несколько видов:

  1. Рамная несущая система. Преимущество этой системы в простоте, как производства, так и ремонта. Кроме того, рамная несущая система позволяет выпускать шасси, различные по модификации автомобиля.
  2. Кузовная несущая система. Данная система позволяет понизить массу автомобиля, снизить центр тяжести, а значит, повысить устойчивость при движении. Есть, конечно, у нее и недостаток — это достаточно плохая изоляция шумов извне.
  3. Рамно-кузовная система. Применяется исключительно на автобусах. Состоит из соединенных между собой деталей рамы и кузова. Является довольно простой при ремонте и производстве.

Сцепление

Если говорить простыми словами, сцепление предназначено для того, что бы на короткое время разъединять двигатель от трансмиссии, а потом заново их соединять. Сцепление состоит из механизма сцепления и привода. Привод предназначен для того, что бы передавать усилия от водителя к определенному механизму. В автомобиле каждый механизм имеет свой привод, благодаря которому и приходит в действие.

Механизм сцепления – это устройство, в котором происходит процесс передачи крутящего момента посредством трения. Составляющими частями механизма сцепления являются картера, кожуха, ведущий, ведомый и нажимный диски.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.
Все вышеописанное – это только вершина айсберга, так как каждый из пунктов содержит еще не один десяток подпунктов. Для общего понимания устройства автомобиля вполне достаточно знать его основные узлы и агрегаты. Теперь вы точно знаете, как и почему ваш автомобиль двигается, тормозит и «кушает» бензин.

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Эта статья предназначена для новичков, которым нужно научиться разбираться в машинах, а также различать виды кузовов.

Многим людям кажется, что автомобили очень похожи друг на друга, а главными отличиями являются лишь светотехника и багажник. Но сегодня мы попробуем освоить азы, которые помогут вам хоть немного прояснить ситуацию.

У каждой модели и марки автомобиля есть определенные особенности. Однако они также имеют немало общего. Если вы намерены хорошо разбираться в транспортных средствах и различать существующие виды кузовов автомобилей, то начнем!

Производители автомобилей

Следующий шаг – запомнить основные компании, занимающиеся производством автомобилей. Наиболее известные автопроизводители: Mercedes, Audi, Toyota, Volkswagen, Lexus, Renault, Mazda, Chevrolet и другие. Самый простой способ, который поможет вам запомнить всех автопроизводителей – по значкам в передней части авто.

Значок и кузов являются лишь визуальными различиями автомобилей. Поэтому для того, чтобы хорошо разбираться в машинах, нужно также уделить немало внимания изучения технических параметров авто – КПП, двигателю, а также ходовой части. Нужно понимать, что научиться всему лишь за несколько дней вы не сможете, в связи с чем рекомендуем вам запастись терпением и регулярно посещать наш Автопаб (обратите внимание на разделы “Полезные советы“ и “Устройство“)! Вместе с нами вы научитесь правильно обслуживать и ремонтировать своего «железного коня». Уже через некоторое время вы сможете стать одним из экспертов нынешней автомобильной промышленности.

Как научиться разбираться в машинах с нуля? Подробное

Как научиться разбираться в автомобилях внутри, снаружи и под капотом?

Умение разбираться в машинах — понятие довольно широкое. Для кого-то достаточно отличить одну модель от другой. Те же люди, профессия которых связана с автомобилями, вкладывают в это понятие гораздо более широкий смысл:

  • тип кузова;
  • класс автомобиля;
  • тип двигателя — инжектор, карбюратор, дизель, одно- или двухтактный, гибридный, электромобиль;
  • трансмиссия — механика, автомат, вариатор, роботизированная, преселективная (с двойным сцеплением).

Если вы работаете, например, в компании, торгующей запасными частями, или в автомагазине, то по должностной инструкции просто обязаны обладать широкими знаниями:

  • досконально знать модельный ряд того или иного автопроизводителя — то есть должны знать в чем разница между различными двигателями, к примеру ВАЗ-2104 — ВАЗ-21073, ВАЗ-21067, их объем, топливо, особенности;
  • технические особенности различных агрегатов;
  • особенности конструкции и устройства.

Если вам когда-либо приходилось покупать запчасти, то знаете, что хорошему специалисту достаточно показать ту или иную запчасть — рабочий тормозной цилиндр, шестерню второй передачи, главный или промежуточный вал КПП, тросик сцепления, выжимной подшипник, диск фередо — он без проблем назовет их марку, скажет от какой это машины, а самое главное — точно скажет, что это такое. Также он без труда подберет нужную вам деталь по каталогу — от уплотнительного резинового колечка или манжеты, до трамблера в сборе или кулисы коробки передач.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Понятно, что такое умение приходит только с опытом. Мы же попытаемся на нашем сайте Vodi.su дать основные рекомендации.

Базовые понятия

Любой автомобиль состоит из семи главных систем:

  • мотор;
  • трансмиссия;
  • рулевое управление;
  • шасси или подвеска;
  • тормозная система;
  • кузов;
  • электрооборудование.

Кузов — классы и типы

Первое, что мы видим, любуясь той или иной машиной — это кузов. Мы уже много рассказывали об этом на нашем сайте, поэтому просто повторим.

Также от длины кузова зависит класс автомобиля — способов классификации есть очень много, наиболее распространенной является европейская:

  • «А» — компактные хэтчбеки, например Chevrolet Spark, Daewoo Matiz;
  • «B» — малые авто — все ВАЗы, Дэу Ланос, Geely MK;
  • «C» — средний класс — Шкода Октавиа, Форд Фокус, Мицубиси Лансер.

Ну и так далее — на нашем сайте Vodi.su есть статья. где классы расписаны более подробно.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Свои типы классификации есть и у отдельных производителей, например BMW, Audi, или Мерседес. Достаточно зайти на официальный сайт, чтобы определить разницу:

  • Мерседес А-класс — самый малый класс, соответствует В-классу по европейской классификации;
  • В-класс — соответствует С-классу;
  • С-класс (Comfort-Klasse);
  • CLA — компактный престижный легкий класс;
  • G, GLA, GLC, GLE, M — Гелендваген, внедорожники и SUV-класс.

Несложно разобраться с классификацией Ауди:

  • А1-А8 — хэтчбеки, седаны универсалы с разной длиной кузова;
  • Q3, Q5, Q7 — внедорожники, кроссоверы;
  • ТТ — родстеры, купе;
  • R8 — спорткары;
  • RS — «заряженные версии» с улучшенными техническими характеристиками.

Такая же классификация и у БМВ:

  • Серии 1-7 — легковые авто типа хэтчбек, универсал, седан;
  • Х1, Х3-Х6 — внедорожники, кроссоверы;
  • Z4 — родстеры, купе, кабриолеты;
  • М-серия — «заряженные» версии.

Для большинства покупателей, особенно женского пола, именно тип кузова имеет решающее значение. Тем не менее, кузов — это лишь обертка, а технические характеристики — самое главное. Рассмотрим основные.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Двигатель

Тема необъятная, назовем главные моменты:

  • по типу топлива — бензин, дизель, газ, газо-топливные, гибриды, электромобили;
  • по количеству цилиндров — трехцилиндровые и более (есть например моторы на 8 и 16 цилиндров);
  • по расположению цилиндров — рядные (цилиндры просто стоят в ряд), оппозитные (цилиндры друг против друга), V-образные;
  • по расположению под капотом — продольные, поперечные.

В большинстве легковых авто используются рядные 3-4-цилиндровые двигатели с продольной (по оси движения) или поперечной установкой. Если же речь идет про грузовые авто или машины классом выше среднего, то мощность достигается за счет добавления цилиндров.

Вам будет интересно  Общее устройство ходовой части трактора автомобиля

Кроме того, неотъемлемым элементом двигателя является система охлаждения, которая может быть:

  • жидкостная — охлаждение производится тосолом. антифризом. простой водой;
  • воздушная — яркий пример «Запорожец», в котором двигатель находился сзади, а воздух всасывался благодаря вентилятору, такая же система используется на мотоциклах;
  • комбинированная — охлаждение с помощью тосола, для дополнительного обдува применяется вентилятор.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Также важные моменты:

  • система впрыска — карбюратор, инжектор;
  • система зажигания — контактная (с помощью распределителя), бесконтактная (датчик Холла. коммутатор), электронная (процесс контролируется блоком управления);
  • механизм газораспределения;
  • система смазки и так далее.
Трансмиссия

Основная задача трансмиссии — передавать момент вращения от мотора к колесам.

  • сцепление — соединяет или разделяет трансмиссию с двигателем;
  • коробка передач — выбор режима езды;
  • кардан, карданная передача — передает момент движения на ведущую ось;
  • дифференциал — распределение момента между колесами ведущей оси.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

В большинстве современных авто применяется одно- или двухдисковое сухое сцепление, работающее в паре с механической или роботизированной (полуавтоматической, преселективной) коробкой передач, либо гидротрансформатор — гидрообъемная система, в которой энергия двигателя приводит в движение поток масла — автоматические коробки передач или CVT (вариаторная КПП).

Вот как раз тип коробки передач имеет для многих решающее значение. По собственному опыту скажем, что механика — наилучший вариант, поскольку водитель сам выбирает оптимальный режим и при этом расходуется меньше топлива. К тому же, МКПП проста и дешева в обслуживании. Автомат и вариатор — значительно упрощают процесс вождения, но если они сломаются, то готовьте нешуточные суммы денег.

Также трансмиссия включает в себя такое понятие, как тип привода:

  • передний или задний — момент вращения приходится на одну ось;
  • полный — ведущими являются обе оси, правда, привод может быть как постоянным, так и подключаемым.

Раздаточная коробка служит для распределения крутящего момента на оси автомобиля. Она устанавливается в полноприводных авто, например УАЗ-469 или ВАЗ-2121 «Нива».

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Как видим, автомобиль — довольно сложный механизм. Тем не менее, большинству достаточно уметь управлять им и выполнять простейшие операции, например замену колеса. Техобслуживание же лучше доверить профессионалам.

: устройство и выбор автомобиля

Общее устройство автомобиля

Структурная схема заднеприводного автомобиля показана на рис. 6.1.1.

В состав автомобиля входят:

  • двигатель 1;
  • силовая передача или трансмиссия, в состав которой входят: сцепление 5, коробка передач 7, карданная передача 8, главная передача и дифференциал 11, полуоси 10;

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.1. Структурная схема заднеприводного автомобиля: 1 — двигатель; 2 — педаль подачи топлива; 3 — генератор; 4 — педаль сцепления; 5 — сцепление; 6 — рычаг переключения передач; 7 — коробка переключения передач; 8 — карданная передача; 9 — колесо; 10 — полуоси; 11 — главная передача и дифференциал; 12 — стояночный (ручной) тормоз; 13 — основная тормозная система; 14 — стартер; 15 — электропитание от аккумулятора; 16 — подвеска; 17 — рулевое управление; 18 — гидромагистраль

  • ходовая часть, в которую входят: передняя и задняя подвески 16, колеса и шины 9;
  • механизмы управления, состоящие из рулевого управления 17, основной 13 и стояночной 12 тормозной системы;
  • электрооборудование, в состав которого входят источники электрического тока (аккумулятор и генератор), электрические потребители (система зажигания, система пуска, приборы освещения и сигнализации, контрольно-измерительные приборы, системы обогрева и вентиляции, стеклоочиститель, стеклоомыватель и др.);
  • несущий кузов.

У переднеприводных автомобилей нет карданной передачи и надкарданного короба в кузове, поэтому салон становится просторней и комфортабельней, а масса автомобиля меньше.

Двигатель 1 (рис. 6.1.1) — машина, преобразующая какой-либо вид энергии (бензин, газ, дизельное топливо, заряд электричества) в энергию вращения коленчатого двигателя.

На большинстве современных автомобилей установлены поршневые двигатели внутреннего сгорания (ДВС), в которых часть энергии, выделяющейся при сгорании топлива в цилиндре, преобразуется в механическую работу вращения коленчатого вала (рис. 6.1.2).

Литраж — единица измерения объема двигателя равная произведению площади поршня на длину его хода и число цилиндров. Литраж характеризует мощность и размеры двигателя, выражается в литрах или кубических сантиметрах.

Для изменения количества топливной смеси, подаваемой в цилиндр (для изменения мощности двигателя), служит педаль подачи топлива (педаль газа) 2.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.2. Внешний вид современного двигателя: 1 — крышка клапанной коробки; 2 — пробка горловины для заливки масла в двигатель; 3 — головка блока цилиндров; 4 — шкивы; 5 -приводной ремень; 6 — генератор; 7 — картер; 8 — поддон; 9 — выпускной коллектор

На коленчатом валу установлен маховик с зубчатым венцом, который является ведущим диском сцепления 5.

Сцепление 5 осуществляет постоянную механическую связь между двигателем и коробкой передач и предназначено для кратковременного ее отключения на время, необходимое для включения или переключения передачи.

Сцепление (рис. 6.1.3) представляет собой две фрикционные муфты 1 и 3, прижатые друг к другу пружиной 4. Ведущий диск 1 механически связан с коленчатым валом двигателя, ведомый диск 3 — с ведущим валом коробки передач 14.

Включение и выключение сцепления осуществляется водителем с помощью педали 8 (когда педаль нажата, сцепление выключено). При нажатии на педаль диски сцепления 1 и 3 расходятся, ведущий диск 1, связанный с двигателем 13, вращается, но это вращение на ведомый диск 3 не передается (сцепление выключено). Выключать сцепление нужно на период включения или переключения передач для безударного соединения шестерен в коробке передач.

При плавном отпускании педали происходит плавное сцепление ведущего и ведомого дисков. При этом за счет проскальзывания ведущий диск плавно навязывает вращение ведомому диску. Тот начинает вращаться, передавая крутящий момент на первичный вал коробки передач 14. Таким образом автомобиль может начать плавное движение с места или же продолжит движение на новой передаче.

Коробка переключения передач служит для изменения по величине и на-правлению крутящего момента и передачи его от двигателя к ведущим колесам, а также для длительного разобщения двигателя от ведущих колес во время стоянки автомобиля.

Коробка передач может быть механической (с ручным переключением передач) или автоматической (гидротрансформатор, роботизированная или вариаторная коробка).

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.3. Схема сцепления: 1 — маховик; 2 — ведомый диск сцепления; 3 — нажимной диск; 4 — пружина; 5 — отжимные рычаги; 6 — выжимной подшипник; 7 — вилка выключения сцепления; 8 — педаль сцепления; 9 — главный цилиндр сцепления; 10 — гидравлическая жидкость; 11 — трубопровод; 12 — рабочий цилиндр сцепления; 13 —двигатель; 14 — ведущий вал коробки передач; 15 — коробка передач

Рекомендуем: Развал схождение: регулировка, проверка,

Механическая коробка переключения передач (рис. 6.1.4) представляет собой редуктор со ступенчато изменяемым коэффициентом передач.

В его составе:

  • картер 12, в котором размещено масло 13 для смазки трущихся деталей;
  • первичный вал 2, связанный с ведомым диском сцепления 1
  • шестерня первичного вала 3, которая связана постоянно с шестерней промежуточного вала;
  • промежуточный вал 4 с набором шестерен разного диаметра;
  • вторичный вал 9 с набором шестерен, которые способны перемещаться с помощью вилки переключения передач 6;
  • механизм переключения передач 8 с рычагом переключения 7;
  • синхронизаторы — устройства, обеспечивающие выравнивание скоростей вращения шестерен во время переключения передач.

Водитель переключает передачи с помощью рычага переключения 7. Поскольку в коробке передач современного автомобиля имеется большой набор шестерен, то вводя в зацепление различные их пары (при включении любой передачи), водитель изменяет и общее передаточное число (коэффициент передачи). Чем ниже передача, тем ниже скорость движения автомобиля, но больший крутящий момент и наоборот.

При работающем двигателе перед включением или переключением передач в механической коробке для безударного переключения шестерен нужно выжимать педаль сцепления (выключать сцепление).

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.4. Механическая коробка переключения передач: 1 — сцепление; 2 — первичный вал; 3 — ведущая шестерня; 4 — промежуточный вал; 5 — шестерня вторичного вала; 6 — вилка переключения передач; 7 — рычаг переключения передач; 8 — переключающее устройство; 9 — вторичный вал; 10 — крестовина; 11 — карданная передача; 12 — картер; 13 — масло для коробки передач

Наиболее распространенные схемы переключения передач в легковых автомобилях приведены на рис. 6.1.5.

Рис. 6.1.5. Наиболее распространенные схемы переключения передач в легковых автомобилях — 1 и 2, 3 и 4 — пользование рычагом переключения передач

В автоматическую коробку переключения передач (рис. 6.1.6) входят:

  • гидротрансформатор (2, 5, 4, 5, 9), который непосредственно присоединен к двигателю, заполнен гидравлической жидкостью 10. Жидкость является средой для передачи крутящего момента от двигателя к механической коробке передач. Принцип работы таков: с увеличением оборотов двигателя увеличиваются обороты вала 2 с лопастями 3, которые вызывают вращение гидравлической жидкости 10. Вращающаяся жидкость начинает давить на лопасти вторичного вала 4 и вызывает вращение вторичного вала. Гидротрансформатор по сути своей работы исполняет роль сцепления;
  • механическая коробка передач 7 получает вращение от гидротрансформатора, переключение передач в ней осуществляется сервоприводами по командам блока управления 6.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.6. Автоматическая коробка переключения передач: 1 —двигатель; 2 — первичный вал; 3 — лопасти первичного вала; 4 — лопасти вторичного вала: 5 — вторичный вал; 6 — блок управления коробкой-автомат; 7 — механическая коробка переключения передач; 8 — выходной вал

Для управления автоматической, роботизированной или вариаторной коробкой передач служит селектор переключения передач (рис. 6.1.7).

Рис. 6.1.7. Типовые схемы селекторов автоматических коробок переключения передач:

Р — парковка, механически блокирует коробку передач; R — задний ход, включать следует только после полной остановки автомобиля; N — нейтраль, в этом положении можно запускать двигатель; D — драйв, движение вперед; S (D3) — диапазон пониженных передач, включается на дорогах с небольшими подъемами. Торможение двигателем более эффективное, чем в положении D; L (D2) — второй диапазон пониженных передач. Включается на тяжелых участках дорог. Торможение двигателем еще более эффективное

Карданная передача (в задне- и полноприводном автомобиле) позволяет передавать крутящий момент от коробки передач на задний мост (главную передачу) в условиях движения автомобиля по неровной дороге (рис. 6.1.8).

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.8. Карданная передача: 1 — передний вал; 2 — крестовина; 3 — опора; 4 — карданный вал; 5 — задний вал

Главная передача 5 служит для увеличения крутящего момента и передачи его под прямым углом на полуоси 6 автомобиля (рис. 6.1.9).

Дифференциал обеспечивает вращение ведущих колес с различными скоростями при повороте автомобиля и движении колес по неровной дороге.

Полуоси 6 передают крутящий момент ведущим колесам 7.

Ходовая часть обеспечивает движение и плавность хода. Она включает в себя подрамник, как правило, совмещенный с кузовом автомобиля, к которому посредством передней и задней подвесок крепятся элементы передней и задней осей со ступицами и колесами 7.

Механизмы и детали ходовой части связывают колеса с кузовом, гасят его колебания, воспринимают и передают силы, действующие на автомобиль.

Находясь в салоне легкового автомобиля, водитель и пассажиры испытывают медленные колебания с большими амплитудами и быстрые колебания с малыми амплитудами. От быстрых колебаний защищает мягкая обивка сидений, резиновые опоры двигателя, коробки передач и пр. Защитой от мед-ленных колебаний служат упругие элементы подвески, колеса и шины.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.9. Заднеприводный автомобиль: 1 — двигатель; 2 — сцепление; 3 — коробка передач; 4 — карданная передача; 5 — главная передача; 6 — полуось; 7 — колесо; 8 — рессорная подвеска; 9 — пружинная подвеска; 10 — рулевое управление

Подвеска (рис. 6.1.10) предназначена для смягчения и гашения колебаний, передаваемых от неровностей дороги на кузов автомобиля. Благодаря подвеске колес кузов совершает вертикальные, продольные, угловые и поперечно-угловые колебания. Все эти колебания определяют плавность хода автомобиля. Подвеска может быть зависимой и независимой.

Зависимая подвеска (рис. 6.1.10), когда оба колеса одной оси автомобиля связаны между собой жесткой балкой (задние колеса). При наезде на неровность дороги одного из колес второе наклоняется на тот же угол. Независимая подвеска, когда колеса одной оси автомобиля не связаны жестко друг с другом. При наезде на неровность дороги одно из колес может менять свое положение, положение второго колеса не изменяется.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.10. Схема работы зависимой (а) и независимой (б) подвески колес автомобиля

Упругий элемент подвески (пружина или рессора) служит для смягчения ударов и колебаний, передаваемых от дороги к кузову.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.11. Схема амортизатора:

Рекомендуем: Принцип работы электрического стеклоподъемника и причины поломки

1 — кузов автомобиля; 2 — шток; 3 — цилиндр; 4 — поршень с клапанами; 5 — рычаг; 6 — нижняя проушина; 7 —гидравлическая жидкость; 8 — верхняя проушина

Гасящий элемент подвески — амортизатор (рис. 6.1.11) — необходим для гашения колебаний кузова за счет сопротивления, возникающего при перетекании жидкости 7 через калиброванные отверстия из полости «А» в полость «В» и обратно (гидравлический амортизатор). Также могут применяться газовые амортизаторы, в которых сопротивление возникает при сжатии газа. Стабилизатор поперечной устойчивости автомобиля предназначен для повышения управляемости и уменьшения крена автомобиля на поворотах. На повороте кузов автомобиля одним своим боком прижимается к земле, в то время как второй бок хочет уйти «в отрыв» от земли. Вот в отрыв-то ему и не дает возможности уйти стабилизатор поперечной устойчивости, который, прижавшись к земле одним концом, вторым прижимает другую сторону автомобиля. А при наезде какого-либо ко-леса на препятствие стержень стабилизатора закручивается и стремится вернуть это колесо на свое место.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.12. Схема рулевого управления типа «шестерня — рейка»: 1 — колеса; 2 — поворотные рычаги; 3 — рулевые тяги; 4 — рейка рулевого механизма; 5- шестерня; 6-рулевое колесо

Рулевое управление (рис. 6.1.12) служит для изменения направления движения автомобиля с помощью рулевого колеса. При вращении руля 6 шестерня 5 вращается и перемещает рейку 4 в ту или иную сторону. Рейка при перемещении изменяет положение тяг 3 и связанных с ними поворотных рычагов 2. Колеса поворачиваются.

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Рис. 6.1.13. Тормозная система: основная — 1-6 и стояночная (ручная) -7-10. Исполнительные тормозные устройства: А —дисковые; Б — барабанного типа; 1 — главный тормозной цилиндр; 2 — поршень; 3 — трубопроводы; 4 — гидравлическая тормозная жидкость; 5 — шток; 6 — педаль тормоза; 7 — рычаг ручного тормоза; 8 — трос; 9 — уравнитель; 10 — трос

Тормозная система (рис. 6.1.13) служит для снижения скорости вращения колес за счет сил трения, возникающих между тормозными колодками 11 и тормозными барабанами А или дисками Б, а также для удержания автомобиля в неподвижном состоянии на стоянках, на спусках и подъемах с помощью ручной тормозной системы (7-10). Водитель управляет тормозной системой с помощью педали тормоза 6 основной тормозной системы и рычага стоя-ночного (ручного) тормоза 7.

Основная тормозная система (1-6), как правило, многоконтурная, то есть при нажатии на педаль тормоза 6 перемещаются поршни 2, давление гидравлической тормозной жидкости 4 по трубопроводам 3 передается к исполнительным тормозным устройствам А — для торможения передних колес и тормозным исполнительным устройствам Б — для торможения задних колес. Системы А и Б — независимы друг от друга. Если один контур тормозной системы выйдет из строя, то другой будет продолжать выполнять функцию торможения, хотя и менее эффективно. Многоконтурность тормозной системы повышает безопасность движения.

Электрооборудование автомобиля включает в себя источники электрического тока (аккумулятор, генератор) и электрические потребители (системы пуска, зажигания, приборы освещения, сигнализации, контрольно-измерительные приборы, стеклоочистители, стеклоомыватели, система обогрева, вентиляции и др.).

Энергия аккумулятора используется при неработающем двигателе, энергия генератора вырабатывается только при работе двигателя, она используется для подзарядки аккумулятора и питания других потребителей автомобиля.

Кузов автомобиля жесткий, несущий.

Мат. часть для новичков, что находится под капотом автомобиля?

Узлы и агрегаты автомобиля под капотом. Строение автомобиля для начинающих.

Для тех, кто хочет начать самостоятельно обслуживать свой автомобиль, а также для тех, кому просто интересно расширить свой кругозор, жизненно необходимо начать знакомство с внутренностями и технологиями автомобиля с изучения того, что находится у него под капотом. В сегодняшней лекции мы ознакомим вас с двумя типами двигателей иномарок. Первый мотор можно было часто встретить в автомобилях из США. Второй тип распространился по всему миру и в 90, 00-х годах стал достаточно популярным типом двигателя, который вполне возможно установлен на вашем автомобиле.

Сразу хотим отметить, что информация с которой вы здесь ознакомитесь носит общий характер, ведь каждый двигатель, даже одного объёма, типа и одинакового технологического уровня сугубо индивидуален и порой может значительно отличаться в технологическом плане от других силовых агрегатов.

Для чего предназначены механизмы управления автомобиля?

Для чего предназначены механизмы управления автомобиля?

Для чего предназначены механизмы управления автомобиля?

Современный автомобиль напичкан множеством примочек и апгрейдов. В этой статье мы попробуем разобраться во внутренностях автомобиля, а именно, в его устройстве и конструкции. Какие детали служат для комфорта, какие необходимы для езды, а какие – для безопасности. Ниже представлен список комплектующих, на которые можно разделить все устройства и кузовные части автомобиля:

  1. Несущая конструкция автомобиля.
  2. Трансмиссия.
  3. Электрооборудование.
  4. Двигатель.
  5. Ходовая часть.
  6. Система управления автомобилем.

Далее рассмотрим все эти разделы более подробно.

Общие сведения об устройстве автомобиля

Несущая система автомобиля

Она является скелетом автомобиля, к которому в последующем крепятся все детали. Именно от нее зависит срок службы автомобиля, и именно на несущую систему приходятся все нагрузки, которым подвергается автомобиль во время движения. Отсюда и ценовое соотношение если определить стоимость всего автотранспорта в 100%, то 50% будет приходиться именно на эту систему. Условно ее можно разделить на несколько видов:

  1. Рамная несущая система. Преимущество этой системы в простоте, как производства, так и ремонта. Кроме того, рамная несущая система позволяет выпускать шасси, различные по модификации автомобиля.
  2. Кузовная несущая система. Данная система позволяет понизить массу автомобиля, снизить центр тяжести, а значит, повысить устойчивость при движении. Есть, конечно, у нее и недостаток – это достаточно плохая изоляция шумов извне.
  3. Рамно-кузовная система. Применяется исключительно на автобусах. Состоит из соединенных между собой деталей рамы и кузова. Является довольно простой при ремонте и производстве.

Схема трансмиссии заднеприводного автомобиля

Важность трансмиссии

Следующий элемент, который мы рассмотрим, – это трансмиссия. Это силовая передача, осуществляющая взаимосвязь двигателя с ведущими колесами автомобиля. Различают несколько видов трансмиссии: механическая (наиболее распространена), электрическая, гидрообъемная и комбинированная. На примере механической трансмиссии рассмотрим работу различных узлов, входящих в ее состав:

  1. Сцепление. Главной задачей является мягкое соединение маховика, первичного вала коробки передач. В состав сцепления входят следующие составные корзина и диск сцепления, а также выжимной подшипник.
  2. Коробка передач. Она предназначена для преобразования крутящего момента и дальнейшая его передача к карданному валу. Двигатель усиливается за счет вторичного вала. Среди коробок передач имеется разделение на механический и автоматический вид.
  3. Карданный вал (для автомобилей с задним приводом), передающий крутящий момент от вторичного вала к главной передаче.
  4. Соединение дифференциала и главной передачи представляет собой так называемый мост, который передает силу двигателя к колесам через полуоси.
  5. Полуось (приводной вал) – металлический стержень с устройством сцепления с дифференциалом и ШРУСом.
  6. Шарнир равных угловых скоростей (ШРУС) осуществляет подачу силы вращения на ведущие колеса.
  7. Раздаточный механизм распределяет усилия двигателя по ведущим колесам. Данный узел применяется в авто с колесной формулой 4*4.
Вам будет интересно  Урал-4320: технические характеристики, тормозная система, раздаточная коробка устройство, расход топлива на 100 км, ПГУ, грузоподъемность, инструкция по эксплуатации, электросхема, бортовой, самосвал, тормозная система, тягач, раздатка, схема электрооборудования, заправочные объемы, схема предохранителей, масса, подключение, КПП, рулевой механизм

Схма электрооборудования автомобиля – ВАЗ 2109

Электрооборудование автомобиля

Далее идет электрооборудование, которое представляет собой совокупность электрических приборов и аппаратов, обеспечивающих нормальную работу двигателя. Электрическая энергия необходима для запуска автомобиля, воспламенения горючей смеси, освещения, сигнализации, дополнительной аппаратуры. В состав электрооборудования входят источники и потребители тока. Источниками электрооборудования являются:

  1. Генератор – служит для преобразования механической энергии, получаемой от двигателя в электрическую энергию;
  2. Регулятор напряжения – выполняет функцию стабилизатора, держит на постоянном уровне напряжение тока, который вырабатывается генератором при изменяющейся частоте вращений коленчатого вала двигателя;
  3. Аккумуляторная батарея (аккумулятор) – необходим для преобразования химической энергии в электрическую энергию.

Потребителями тока являются:

  1. Стартер – служит для обеспечения вращения коленчатого вала частотой необходимой для пуска двигателя;
  2. Система зажигания – в процессе своей работы осуществляет воспламенение топлива в цилиндрах в порядке рабочего режима двигателя;
  3. Система освещения – вспомогательная служба, обеспечивающая работу авто в условиях пониженной видимости;
  4. Система сигнализации – служит для обеспечения безопасности движения автомобиля.

Классификация двигателей

Следующее, что мы рассмотрим, – это двигатель. Он являет собой комплекс механизмов, которые преобразуют тепловую энергию сгорающего в его цилиндрах топлива в механическую. Двигателя делят по многим параметрам. Во-первых, по виду топлива: бензиновые и дизельные. Во-вторых, по воспламенению горючей смеси: от электрической искры и от сжатия. В-третьих, по числу цилиндров: 2-ух, 3-ех, 4-ех, 5-ти, а также 6-ти и 8-ми цилиндровые и многоцилиндровые. В-четвертых, по расположению цилиндров: рядные и V-образные. Рабочий процесс двигателей состоит из тактов впуска, сжатия, рабочего хода и выпуска.

Механизмы и системы двигателя

Распределяют следующие механизмы и системы двигателя. Рабочий процесс двигателя главным образом осуществляется благодаря работе кривошипно-шатунному механизму. Открытие и закрытие впускных и выпускных клапанов двигателя производится за счет газораспределительного механизма.

Подачу масла к трущимся деталям двигателя производит смазочная система. Охлаждение сильно нагретых деталей двигателя происходит за счет специальной системы охлаждения, которая отводит теплоту. Система питания подготавливает горючую смесь для двигателя и обеспечивает выход из двигателя отработавших газов.

Воспламенение горючей и рабочей смеси в цилиндрах двигателя происходит благодаря системе зажигания.

Работа ходовой части

Ходовая часть – это комплекс устройств, при взаимодействии которых осуществляется перемещение автомобиля по дороге. Сюда входят колеса, а также задняя и передняя подвески. Через колеса осуществляется связь транспорта с дорогой. Главными задачами колес является передвижение по поверхности и изменение направления движения. Колеса различают по типу конструкции (дисковые, бездисковые, спицевые) и по назначению (ведущие, управляемые, комбинированные, поддерживающие).

Колеса автомобиля могут быть с глубокими ободами или соединительными деталями, по внешнему виду напоминающими диски и спицы. Эти самые ободья необходимы для установки пневматической шины. Именно за счет ступицы осуществляется крепление колеса к мосту и его способность вращаться. За счет подвески происходит упругая связь колес и несущей системой. Подвеска выполняет две функции. Первая – повышение безопасности движения автомобиля, а вторая – это плавный ход автомобиля.

Виды подвесок 1

Виды подвесок 2

Типы подвески

Подвески делятся на следующие типы:

  1. Зависимая подвеска – это когда колеса одного из мостов взаимосвязаны друг с другом посредством жесткой балки. Следовательно, при движении они взаимосвязаны.
  2. Независимая подвеска – это когда колеса одного из мостов не связаны между собой, а подвешены независимо по отношению друг к другу, а следовательно и перемещение любого из колес не вызывает перемещения другого. Общими частями всех подвесок являются:
  3. Элементы, обеспечивающие упругость;
  4. Элементы, распределяющие направление силы;
  5. Гасящий элемент;
  6. Элементы, стабилизирующие поперечную устойчивость;
  7. Крепеж.

Работа подвески

Рассмотрим их более подробно. Элементы, которые обеспечивают упругость между неровностями на дороге и кузовом автомобиля, являются, так сказать, буфером. Сюда относятся пружины, рессоры, торсины. Жесткость пружин бывает постоянной и переменной. Рессоры визуально представляют из себя несколько металлических пластин взаимно связанных между собой, а также они довольно упруги по свойствам. Торсины внешне выглядят как металлическая труба, а внутри располагаются стержни.

Устройства для распределения силы

Устройства, распределяющие направление силы, в свою очередь, выполняют несколько задач. Во-первых, крепление подвески к кузовной части автомобиля. Во-вторых, передача силы на кузовную часть автомобиля. В-третьих, правильное расположение колес по отношению к кузову в горизонтальной и вертикальной плоскостях. Задачей гасящего элемента является противодействие элементам упругости, а если быть точнее, – сглаживание упругости. Стабилизационные устройства поперечной упругости распределяют боковую нагрузку автомобиля при изменении траектории движения. Все составные части подвески крепятся к кузовной основе и к опорным частям колес.

Система управления автомобилем

Под самой системой понимается совокупность устройств и механизмов, предназначенных для изменения скорости авто и изменения направления движения. Под устройствами изменения направления движения скрывается не что иное, как рулевое управление, применяющееся для нормального управления авто. Под системой изменения скорости, в свою очередь, понимается тормозная система, являющаяся главным узлом безопасности водителя и пассажиров. В комплектацию рулевой системы входят:

  1. Руль;
  2. Рулевой вал с крестовиной, который с одной стороны имеет шпицы для фиксации руля, а с другой шпицы – для крепления к рулевой колонке;
  3. Рулевая колонка, устройство, собранное в одном корпусе, в состав которого входит червячная ведущая шестерня и ведомая, рулевой тяги, состоящие из наконечника и маятника.

Схема работы гидроусилителя рулевого управления

Работа рулевого механизма

Рассмотрим более детально рулевой механизм в работе: во время вращения рулевого колеса усиливается вращение червячного механизма колонки, который, в свою очередь, начинает вращать ведомую шестерню, приводящую в работу рулевую сошку. Она имеет крепление к средней рулевой тяге, а другой конец тяги соединяется с маятниковым рычагом. Он устанавливается на опоре и имеет жесткое крепление к кузову авто.

От сошки с маятником отходят боковые тяги. Наконечники соединены со ступицей. Рулевая сошка, когда поворачивается, посылает усилие сразу на боковую тягу и средний рычаг. Средний рычаг, в свою очередь, дает начало действию второй боковой тяге, в результате чего ступицы поворачиваются, а, следовательно, и колеса вместе с ними. Главной задачей системы торможения является возможность управления скорость авто.

Системы торможения

Существует три варианта системы торможения: рабочая, стояночная, запасная. Основным узлом управления автомобилем и сохранения его в безопасности является рабочая тормозная система. Во избежание произвольного движения авто во время долгой стоянки на участках с наклоном дороги используют стояночный тормоз (ручник). Относительно молодой является запасная тормозная система, используемая для торможения ввиду неисправности рабочей тормозной системы. Из-за того, что пользование ручником при движении исключено, водитель с помощью рычага запасной системы с легкостью блокирует колеса, и транспорт останавливается.

Принцип действия тормозной системы

Данная система торможения может являться отдельным узлом или частью рабочей тормозной системы. Система торможения автотранспорта построена на эффекте трения. Именно вследствие трения между движущейся и находящейся в неподвижности деталью происходит такое явление, как торможение. Ниже рассмотрим непосредственно сам процесс тормоза.

Во время процесса торможения возникает эффект трения между тормозными колодками и тормозным диском или тормозным барабаном, который находится в движении. Вследствие чего тормозные системы стало принято делить на дисковые и барабанные. В наше время стало принято использование результата симбиоза этих систем торможения, а именно, их сочетание.

Хотя, может быть иначе, тут все зависит от решения конструкторов.

Вот, в принципе и все основные устройства и конструкции автомобиля. Конечно, можно еще много всяких мелочей и деталей упомянуть и вспомнить, но именно вышеупомянутые устройства и конструкции являются основными в автомобиле.

Механизмы управления автомобиля

Для чего предназначены механизмы управления автомобиля?

Механизмы управления автомобиля — это механизмы, которые предназначены обеспечивать движение автомобиля в нужном направлении, и его замедление или остановку в случае необходимости. К механизмам управления относятся рулевое управление и тормозная система автомобиля.

Рулевое управлениеавтомобиля — это совокупность механизмов, служащих, для поворота управляемых колес, обеспечивает движение автомобиля в заданном направлении. Передачу усилия поворота рулевого колеса к управляемым колесам обеспечивает рулевой привод. Для облегчения управления автомобилем применяют усилители руля, которыеделают поворот руля легким и комфортным.

Устройство рулевого управления:

1 — поперечная тяга; 2 — нижний рычаг; 3 — поворотная цапфа; 4 — верхний рычаг; 5 — продольная тяга; 6 — сошка рулевого привода; 7 — рулевая передача; 8 — рулевой вал; 9 — рулевое колесо.

Принцип работы рулевого управления

Каждое управляемое колесо установлено на поворотном кулаке, соединенном с передней осью посредством шкворня, который неподвижно крепится в передней оси. При вращении водителем рулевого колеса усилие передается посредством тяг и рычагов на поворотные кулаки, которые поворачиваются на определенный угол (задает водитель), изменяя направление движения автомобиля.

Рулевое управление состоит из следующих механизмов :

1. Рулевой механизм — замедляющая передача, преобразовывающая вращение вала рулевого колеса во вращение вала сошки. Этот механизм увеличивает прикладываемое к рулевому колесу усилие водителя и облегчает его работу.
2. Рулевой привод — система тяг и рычагов, осуществляющая в совокупности с рулевым механизмом поворот автомобиля.
3. Усилитель рулевого привода (не на всех автомобилях) — применяется для уменьшения усилий, необходимых для поворота рулевого колеса.

Устройство рулевого управления

1 – Рулевое колесо; 2 – корпус подшипников вала; 3 — подшипник; 4 – вал колеса рулевого управления; 5 – карданный вал рулевого управления; 6 – тяга рулевой трапеции; 7 — наконечник; 8 — шайба; 9 – палец шарнирный; 10 – крестовина карданного вала; 11 – вилка скользящая; 12 – наконечник цилиндра; 13 – кольцо уплотнительное; 14 – гайка наконечника; 15 — цилиндр; 16 –поршень со штоком; 17 – кольцо уплотнительное; 18 – кольцо опорное; 19 — манжета; 20 – кольцо нажимное; 21 — гайка; 22 – муфта защитная; 23 – тяга рулевой трапеции; 24 — масленка; 25 – наконечник штока; 26 – кольцо стопорное; 27 — заглушка; 28 – пружина; 29 – обойма пружины; 30 – кольцо уплотнительное; 31 – вкладыш верхний; 32 – палец шаровый; 33 – вкладыш нижний; 34 — накладка; 35 – муфта защитная; 36 – рычаг поворотного кулака; 37 – корпус поворотного кулака.

Устройство рулевого привода:

1 – корпус золотника; 2 – кольцо уплотнительное; 3 – кольцо плунжеров подвижное; 4 — манжета; 5 – картер рулевого механизма; 6 — сектор; 7 – пробка заливного отверстия; 8 — червяк; 9 – боковая крышка картера; 10 — крышка; 11 – пробка сливного отверстия; 12 – втулка распорная; 13 – игольчатый подшипник; 14 – сошка рулевого управления; 15 – тяга сошки рулевого управления; 16 – вал рулевого механизма; 17 — золотник; 18 — пружина; 19 — плунжер; 20 – крышка корпуса золотника.

Бак масляный. 1 – Корпус бачка; 2 — фильтр; 3 – корпус фильтра; 4 – клапан перепускной; 5 — крышка; 6 — сапун; 7 – пробка заливной горловины; 8 — кольцо; 9 – шланг всасывающий.

Насос усилительного механизма. 1 – крышка насоса; 2 — статор; 3 — ротор; 4 — корпус; 5 – игольчатый подшипник; 6 — проставка; 7 — шкив; 8 — валик; 9 — коллектор; 10 – диск распределительный.

Принципиальная схема. 1 – трубопроводы високого давления; 2 – механизм рулевой; 3 – насос усилительного механизма; 4 – шланг сливной; 5 – бак масляный; 6 – шланг всасывающий; 7 – шланг нагнетательный; 8 – механизм усилительный; 9 – шланги.

Рулевое управление автомобиля КамАЗ

1 — корпус клапана управления гидроусилителем; 2 — радиатор; 3 — карданный вал; 4 — рулевая колонка; 5 — трубопровод низкого давления; 6 — трубопровод высокого давления; 7— бачок гидросистемы; 8— насос гидроусилителя; 9 — сошка; 10 — продольная тяга; 11 — рулевой механизм с гидроусилителем; 12 — корпус углового редуктора.

Механизм рулевого управления автомобиля КамАЗ :

1 — реактивный плунжер; 2— корпус клапана управления; 3 — ведущее зубчатое колесо; 4 — ведомое зубчатое колесо; 5, 22 и 29— стопорные кольца; 6 — втулка; 7 и 31 — упорные колы к», 8 — уплотнительное кольцо; 9 и 15 — бинты; 10 — перепускной клапан; 11 и 28 — крышки; 12 — картер; 13 — поршень-рейка; 14 — пробка; 16 и 20— гайки; 17 — желоб; 18 — шарик; 19 — сектор; 21 — стопорная шайба; 23 — корпус; 24 — упорный подшипник; 25 — плунжер; 26 — золотник; 27— регулировочный винт; 30— регулировочная шайба; 32— зубчатый сектор вала сошки.

Рулевое управление автомобиля ЗИЛ;

1 — насос гидроусилителя; 2 — бачок насоса; 3 — шланг низкого давления; 4 — шланг высокого давления; 5 колонка; 6 — контактное устройство сигнала; 7 — переключатель указателей поворота; 8 карданный шарнир; 9 — карданный вал; 10 — рулевой механизм; 11 — сошка.

Рулевое управление автомобиля МАЗ-5335:

1 — продольная рулевая тяга; 2— гидроусилитель рулевого привода; 3 — сошка; 4 — рулевой механизм; 5— карданный шарнир привода рулевого управления; 6 — рулевой вал; 7— рулевое колесо; 8 — поперечная рулевая тяга; 9— левый рычаг поперечной рулевой тяги; 10 — поворотный рычаг.

Устройство и виды рулевого управления автомобиля

Для чего предназначены механизмы управления автомобиля?

Рулевое управление – одна из основных систем автомобиля, которая представляет собой совокупность узлов и механизмов, предназначенных для синхронизации положения рулевого колеса (руля) и угла поворота управляемых колес (в большинстве моделей автомобилей это передние колеса). Основное назначение рулевого управления для любых транспортных средств – это обеспечение поворота и поддержание заданного водителем направления движения.

Устройство системы рулевого управления

Схема рулевого управления

Конструктивно система рулевого управления состоит из следующих элементов:

  • Рулевое колесо (руль) – предназначено для управления водителем с целью указания направления движения автомобиля. В современных моделях оно дополнительно оснащается кнопками управления мультимедийной системой. Также в рулевое колесо встраивается передняя подушка безопасности водителя.
  • Рулевая колонка – выполняет передачу усилия от руля к рулевому механизму. Она представляет собой вал с шарнирными соединениями. Для обеспечения безопасности и защиты от угона колонка может быть оснащена электрическими или механическими системами складывания и блокировки. Дополнительно на рулевой колонке устанавливается замок зажигания, органы управления светотехникой и стеклоочистителем ветрового стекла автомобиля.
  • Рулевой механизм – выполняет преобразование усилия, создаваемого водителем через поворот рулевого колеса и передает его приводу колес. Конструктивно представляет собой редуктор с некоторым передаточным отношением. Сам механизм соединяет с рулевой колонкой карданный вал рулевого управления.
  • Рулевой привод – состоит из рулевых тяг, наконечников и рычагов, выполняющих передачу усилия от рулевого механизма к поворотным кулакам ведущих колес.
  • Усилитель рулевого управления – повышает усилие, которое передается от руля к приводу.
  • Дополнительные элементы (амортизатор рулевого управления или “демпфер”, электронные системы).

Стоит также отметить, что подвеска и рулевое управление автомобиля имеют тесную взаимосвязь. Жесткость и высота первой определяют степень отклика автомобиля на вращение рулевого колеса.

Виды рулевого управления

В зависимости от типа редуктора системы, рулевой механизм (система рулевого управления) может быть следующих видов:

  • Реечный – самый распространенный вид, используемый в легковых автомобилях. Этот вид рулевого механизма имеет простую конструкцию и отличается высоким КПД. Недостатки заключаются в том, что этот тип механизма чувствителен к возникающим ударным нагрузкам при эксплуатации в сложных дорожных условиях.
  • Червячный – обеспечивает хорошую маневренность автомобиля и достаточно большой угол поворота колес. Этот вид механизма меньше подвержен влиянию ударной нагрузки, но более дорогостоящий в изготовлении.
  • Винтовой – принцип работы похож на червячный механизм, однако он имеет более высокий КПД и позволяет создавать большие усилия.

В зависимости от вида усилителя, который предусматривает устройство рулевого управления, различают системы:

  • С гидравлическим усилителем (ГУР). Его основным достоинством является компактность и простота конструкции. Гидравлическое рулевое управление среди современных транспортных средств является одним из наиболее распространенных. Недостатком такой системы является необходимость контроля уровня рабочей жидкости.
  • С электрическим усилителем (ЭУР). Такая система рулевого управления с усилителем считается наиболее прогрессивной. Он обеспечивает простоту регулировки настроек управления, высокую надежность работы, экономный расход топлива и возможность управления автомобилем без участия водителя.
  • С электрогидравлическим усилителем (ЭГУР). Принцип действия данной системы аналогичен системе с гидравлическим усилителем. Главное отличие заключается в том, что насос усилителя приводится в действие электродвигателем, а не ДВС.

Рулевое управление современного автомобиля может быть дополнено следующими системами:

  • Активного рулевого управления (AFS) – система изменяет величину передаточного отношения в зависимости от текущей скорости. Она позволяет корректировать угол поворота колес и обеспечивает более безопасное и устойчивое движение на скользких поверхностях.
  • Динамического рулевого управления – работает аналогично активной системе, однако в конструкции в этом случае вместо планетарного редуктора используется электродвигатель.
  • Адаптивного рулевого управления для транспортных средств – главной особенностью является отсутствие жесткой связи между рулем автомобиля и его колесами.

Требования к рулевому управлению автомобиля

Согласно стандарту, к рулевому управлению применяются следующие основные требования:

  • Обеспечение заданной траектории движения с необходимыми параметрами поворотливости, поворачиваемости и устойчивости.
  • Усилие на рулевом колесе для осуществления маневра не должно превышать нормированного значения.
  • Суммарное число оборотов руля от среднего положения до каждого из крайних не должно превышать установленного значения.
  • При выходе из строя усилителя должна сохраняться возможность управления автомобилем.

Существует еще один стандартный параметр, определяющий нормальное функционирование рулевого управления – это суммарный люфт. Данный параметр представляет собой величину угла поворота руля до начала поворота управляемых колес.

Значение допустимого суммарного люфта в рулевом управлении должно быть в пределах:

  • 10° для легковых автомобилей и микроавтобусов;
  • 20° для автобусов и подобных транспортных средств;
  • 25° для грузовых автомобилей.

Особенности правостороннего и левостороннего руля

Левостороннее и правостороннее рулевое управление

В современных автомобилях может быть предусмотрено правостороннее или левостороннее рулевое управление, что зависит от вида транспортного средства и законодательства отдельных стран. В зависимости от этого руль может располагаться справа (при левостороннем движении) или слева (при правостороннем).

В большинстве стран левостороннее рулевое управление (или правостороннее движение). Основное отличие механизмов не только в позиции руля, но и в рулевом редукторе, который адаптирован под различные стороны подключения. С другой стороны, переоборудование правостороннего руля на левостороннее рулевое управление все же возможно.

В некоторых видах спецтехники, например, в тракторах, предусматривается гидрообъемное рулевое управление, которое обеспечивает независимость положения руля от компоновки других элементов. В этой системе отсутствует механическая связь привода и рулевого колеса. Для выполнения поворота колес гидрообъемное рулевое управление предусматривает силовой цилиндр, которым управляет насос-дозатор.

Основные достоинства, которые имеет гидрообъемное рулевое управление для транспортных средств в сравнении с классическим рулевым механизмом с гидравлическим усилителем: необходимость приложения меньших усилий для выполнения поворота, отсутствие люфта, а также возможность произвольного расположения узлов системы.

Таким образом, ГОРУ может обеспечивать и правостороннее, и левостороннее рулевое управление. Это позволяет его устанавливать в транспортных средствах с особыми режимами эксплуатации (дорожно-строительные машины, уборщики).

Вам будет интересно  Ходовая часть хендай акцент.

(10 4,60 из 5)
Загрузка…

Вам также может понравиться

Основные устройства и конструкция автомобиля

Для чего предназначены механизмы управления автомобиля?

Современный автомобиль напичкан множеством примочек и апгрейдов. В этой статье мы попробуем разобраться во внутренностях автомобиля, а именно, в его устройстве и конструкции. Какие детали служат для комфорта, какие необходимы для езды, а какие – для безопасности. Ниже представлен список комплектующих, на которые можно разделить все устройства и кузовные части автомобиля:

  1. Несущая конструкция автомобиля.
  2. Трансмиссия.
  3. Электрооборудование.
  4. Двигатель.
  5. Ходовая часть.
  6. Система управления автомобилем.

Далее рассмотрим все эти разделы более подробно.

Общие сведения об устройстве автомобиля

Рулевое управление: особенности,виды,устройство,фото,видео

Для чего предназначены механизмы управления автомобиля?

Рулевое управление — одна из основных систем автомобиля, которая представляет собой совокупность узлов и механизмов, предназначенных для синхронизации положения рулевого колеса (руля) и угла поворота управляемых колес (в большинстве моделей автомобилей это передние колеса). Основное назначение рулевого управления для любых транспортных средств — это обеспечение поворота и поддержание заданного водителем направления движения.

Особенности узла и конструкция

На автомобилях используется кинематический способ смены направления движения, подразумевающий, что осуществление поворота происходит за счет смены положения управляемых колес. Обычно управляемой является передняя ось, хотя существуют и авто с так называемой системой подруливания. Особенность работы в таких авто заключается в том, что колеса задней оси тоже поворачиваются при изменении направления, хоть и на меньший угол. Но пока эта система широкого распространения не получила.

Помимо кинематического способа на технике используется еще и силовой. Особенность его заключается в том, что для совершения поворота колеса одной стороны притормаживаются, в то время, как с другой стороны они продолжают двигаться с прежней скоростью. И хоть этот способ изменения направления на легковых авто распространения не получил, на них он все же используется, но в несколько ином качестве – как система курсовой устойчивости.

Этот узел автомобиля состоит из трех основных элементов:

  • рулевая колонка;
  • рулевой механизм;
  • привод (система тяг и рычагов);

У каждой составляющей – своя задача.

РУЛЕВАЯ КОЛОНКА

Схема рулевого управления обязательно включает в себя колонку, которая состоит из следующих деталей и узлов:

  • руля (или рулевого колеса);
  • вала (или валов) колонки;
  • кожуха (трубы) колонки с подшипниками, предназначенными для вращения вала (валов);
  • крепежных элементов для обеспечения неподвижности и устойчивости конструкции.

Схема действия колонки заключается в приложении водительского усилия на рулевое колесо и последующей передаче направленно-вращательных движений руля всей системе, если водитель желает изменить режим движения автомобиля.

Рулевой привод

Конструкции рулевого привода различаются расположением рычагов и тяг, составляющих рулевую трапецию, по отношению к передней оси. Если рулевая трапеция находится впереди передней оси, то такая конструкция рулевого привода называется передней рулевой трапецией, при заднем расположении — задней трапецией. Большое влияние на конструктивное исполнение и схему рулевой трапеции оказывает конструкция подвески передних колес.

При зависимой подвеске рулевой привод имеет более простую конструкцию, так как состоит из минимума деталей. Поперечная рулевая тяга в этом случае сделана цельной, а сошка качается в плоскости, параллельной продольной оси автомобиля. Можно сделать привод и с сошкой, качающейся в плоскости, параллельной переднему мосту. Тогда продольная тяга будет отсутствовать, а усилие от сошки передается прямо на две поперечные тяги, связанные с цапфами колес.

При независимой подвеске передних колес схема рулевого привода конструктивно сложнее. В этом случае появляются дополнительные детали привода, которых нет в схеме с зависимой подвеской колес. Изменяется конструкция поперечной рулевой тяги. Она сделана расчлененной, состоящей из трех частей: основной поперечной тяги и двух боковых тяг — левой и правой.

Для опоры основной тяги служит маятниковый рычаг , который по форме и размерам соответствует сошке. Соединение боковых поперечных тяг с поворотными рычагами цапф и с основной поперечной тягой выполнено с помощью шарниров, которые допускают независимые перемещения колес в вертикальной плоскости.

Рассмотренная схема рулевого привода применяется главным образом на легковых автомобилях.

Рулевой привод, являясь частью рулевого управления автомобиля, обеспечивает не только возможность поворота управляемых колес, но и допускает колебания колес при наезде ими на неровности дороги. При этом детали привода получают относительные перемещения в вертикальной и горизонтальной плоскостях и на повороте передают усилия, поворачивающие колеса. Соединение деталей при любой схеме привода производят с помощью шарниров шаровых либо цилиндрических.

Гидроусилитель рулевого управления (гур)

Предназначен для облегчения работы водителя при повороте рулевого колеса. В последнее время применяется в рулевом управлении легковых автомобилей. Гидроусилитель работает по принципу шприца. Он состоит из насоса, распределительного устройства и гидроцилиндра.

ГУР представляет собой герметичный картер, внутри которого находится управляющий клапан и поршень-рейка. Этот поршень соединен винтовой передачей с рулевым валом и своей зубчатой рейкой с шестерней на валу, передающем усилие на рулевую рейку или сошку. С картером ГУР через патрубки соединен насос с расширительным бачком.

В традиционных простых системах привод насоса осуществляется через ремень от коленчатого вала двигателя. В более современных насос ГУР приводится отдельным электромотором — такие усилители называют электрогидравлическими усилителями (ЭГУР). Пока руль находится в положении «прямо», управляющий клапан также пребывает в среднем положении, и рабочая жидкость перекачивается через него.

При повороте же руля в ту или иную сторону клапан перемещается, и жидкость начинает давить на поршень, создавая усилие на валу.

При повороте рулевого колеса распределительное устройство направляет жидкость под давлением в одну из полостей гидроцилиндра, тем самым, помогая водителю на поворотах. При повороте налево, жидкость под давлением поступает в полость «А», а при повороте направо в полость «Б». Когда двигатель не работает, поворот руля будет осуществляться с заметным усилием, так как гидроусилитель не действует.

В обычных ГУР это усилие постоянно и не зависит от скорости движения автомобиля. Отсюда удобный на парковочных маневрах руль с ГУР оказывается недостаточно четким на скорости. Поэтому современные системы ЭГУР, кроме электромотора, имеют управляющий электронный блок, который, исходя из данных скорости автомобиля, рассчитывает нужную величину создаваемого усилия. Чем больше скорость машины, тем меньшее требуется усилие на руле. Соответственно, уменьшается давление на поршень, а при достижении определенной скорости, например 70 км/ч, гидроусилитель выключается вовсе.

При неисправности усилителя, также значительно возрастает усилие поворота рулевого колеса автомобиля. Естественно, что при этом невозможно сразу же отреагировать на изменившуюся дорожную обстановку, что может вызвать опасные последствия. Кроме того, при неработающем усилителе руля, возрастает физическая и эмоциональная усталость водителя. После непродолжительной поездки он уже не в состоянии принимать правильные решения и может явиться виновником дорожно-транспортного происшествия.

Назначение и общее устройство рулевого управления автомобиля

Для чего предназначены механизмы управления автомобиля?

  1. Рулевой механизм
  2. Рулевой привод

Рулевое управление служит для изменения направления движения автомобиля. Изменяют направление при помощи поворота передних направляющих колес.

В рулевое управление входят рулевой механизм и рулевой привод.

Рулевой механизм

Рулевой механизм служит для передачи усилия от рулевого колеса к рулевой сошке.

Рулевой механизм состоит из рулевого колеса 9, рулевого вала 10, рулевой колонки 8, картера 6 с рулевой передачей и вала 5 рулевой сошки 4.

Схема рулевого управления: 1 — поворотный кулак; 2 — верхний рычаг левого поворотного кулака; 3 — продольная рулевая тяга; 4 — рулевая сошка; 5 — вал рулевой сошки; 6 — картер рулевого механизма; 7 — червяк; 8 — рулевая колонка; 9 — рулевое колесо; 10 — рулевой вал; 11 — ролик; 12 — поперечная рулевая тяга; 13 — наконечник поперечной тяги; 14 — нижняя тяга

На автомобилях применяются главным образом следующие типы рулевых передач: глобоидальный червяк с двух- или с трехгребневым роликом и червяк с боковым сектором.

Рулевая передача, состоящая из глобоидального червяка и ролика, устроена следующим образом. На нижнем конце рулевого вала 8 напрессован глобоидальный червяк 5 (червяк со специальной резьбой). Опорами для червяка служат два роликоподшипника 3. С червяком зацепляется своими гребнями ролик 10, сидящий на шариковых 14 или на игольчатых подшипниках на оси 15, смонтированной в прорези головки 16 вала 11 рулевой сошки 17.

Рулевая передача с глобоидальным червяком и двухгребневым роликом (автомобили ГАЗ-63 и ГАЗ-51 А): 1 — нижняя крышка картера; 2 — регулировочные прокладки; 3 — роликоподшипник червяка; 4 — картер; 5 — глобоидальный червяк; 6 — пробка заливного отверстия; 7 — верхняя крышка картера; 8 — рулевой вал; 9 — роликоподшипник вала сошки; 10 — двухгребневый ролик; 11 — вал рулевой сошки; 12 — бронзовая втулка; 13 — сальниковое уплотнение; 14 — шарикоподшипник ролика; 15 — ось ролика; 16 — головка вала сошки; 17 — рулевая сошка

При вращении рулевого колеса червяк заставляет находящийся с ним в зацеплении ролик вместе с рулевой сошкой поворачиваться относительно оси вала сошки. Вогнутая форма червяка обеспечивает правильное зацепление пары червяк — ролик в различных положениях рулевой сошки. Установка ролика на подшипниках качения уменьшает потери на трение и износ (при вращении червяка ролик не скользит по поверхности его резьбы, а перекатывается).

Рулевая передача с цилиндрическим червяком и боковым сектором (автомобили КрАЗ-214 и КрАЗ-219): 1 — сальниковое уплотнение подшипников червяка; 2 — роликоподшипник червяка; 3 — цилиндрический червяк; 4 — рулевой вал; 5 — пробка заливного отверстия; 6 — регулировочные прокладки; 7 — картер; 8 — боковой сектор; 9 — игольчатые подшипники; 10 — пробка сливного отверстия; 11 — сальник; 12 — рулевая сошка

Рулевая передача, состоящая из червяка и бокового сектора, показана на рисунке. Для этой передачи применяется цилиндрический червяк 3. Червяк напрессован на рулевой вал 4 и опирается на два роликоподшипника 2. Червяк находится в зацеплении со спиральными зубьями бокового сектора 8, который выполнен заодно с валом рулевой сошки и вращается в картере 7 на двух игольчатых подшипниках 9. Такого типа передачи применяются на автомобилях большой грузоподъемности, где через рулевое управление передаются большие усилия.

Рулевые передачи размещаются в литом картере, заполненном, маслом. В картере имеются обычно два отверстия: верхнее, закрытое пробкой 5, для заливки масла и нижнее, закрытое пробкой 10, для слива масла. Картер рулевого механизма крепится при помощи болтов к раме автомобиля.

Для обеспечения нормальной работы рулевой передачи в ней регулируются осевой зазор червяка в подшипниках и правильность зацепления передаточной пары.

Рулевая передача значительно облегчает работу водителя. Однако на автомобилях большой грузоподъемности усилие, которое должен прикладывать водитель к рулевому колесу, бывает настолько велико, что уменьшить его, только увеличив передаточное число в рулевой передаче, не удается. Поэтому на автомобилях типа КрАЗ-214 применяются специальные устройства — усилители рулевого управления, которые облегчают управление автомобилем и резко снижают усилие, необходимое для поворота рулевого колеса.

Рулевое управление автомобиля: устройство, принцип работы и виды

Для чего предназначены механизмы управления автомобиля?

Рулевое управление – это узел транспортного средства, который предназначен для обеспечения выполнение поворота направо и налево. Поговорим более подробно о том, каково его устройство, каких он бывает видов, как работает и от каких неисправностей чаще всего страдает.

Устройство рулевого управления автомобиля

Вот из каких составных частей состоит система рулевого управления практически любого колесного транспортного средства:

  • рулевое колесо;
  • колонка;
  • кардан;
  • рулевой механизм;
  • датчик;
  • усилитель;
  • привод.

Рулевое колесо – это привычный всем автомобильный руль, который находится в салоне автомобиля и с помощью которого водитель выполняет поворот.

Колонка – это основание руля, на котором он закреплен. Также она обеспечивает передачу усилия с рулевого колеса на кардан.

Кардан представляет собой вал, который обеспечивает передачу усилия с руля на усилитель.

Усилитель – это устройство, предназначенное для усиления усилия, которое автомобилист прилагает для выполнения поворота, а также для облегчения управления транспортным средством.

Рулевой механизм предназначен для преобразования вертикального вращения кардана в горизонтальное усилие, которое заставляет поворачиваться колеса транспорта.

Привод представляет собой систему тяг и направляющих, которые передают усилие с рулевого механизма непосредственно на колеса, тем самым обеспечивая выполнение поворота.

Все элементы конструкции, описанные выше, располагаются в передней части рамы автомобиля.

Следует отметить, что выше описано общее устройство узла. Некоторые нюансы конструкции могут отличаться в зависимости от модели машины. Однако в целом она идентична на всех автомобилях.

Главное назначение системы – обеспечения возможности выполнения транспортным средством поворота в необходимый момент.

Принцип работы системы рулевого управления

Принцип работы системы выглядит следующим образом.

  • Водитель, желая выполнить поворот, вращает рулевое колесо в салоне машины.
  • В результате этого действия начинает вращаться колонка, а вместе с ней и кардан.
  • Энергия с кардана поступает на усилитель. Здесь она усиливается с помощью гидравлики или электричества.
  • Уже усиленное поворотное усилие поступает на рулевой механизм. Здесь оно преобразуется. Изначально вращение колонки и кардана происходит под углом (практически вертикально). Механизм переводит его в горизонтальную плоскость, чтобы оно могло быть передано на колеса.
  • С механизма энергия поступает на привод. Это устройство преобразует ее с помощью системы тяг и направляющих таким образом, чтобы колеса изменили свое положение.
  • Под действием привода колеса изменяют свое положение и транспортное средство осуществляет поворот.

В автомобилях, где отсутствует усилитель руля, схема работы системы выглядит точно так же, однако упомянутое устройство в ней участия не принимает. На этом отличия заканчиваются.

Виды усилителей рулевого управления

В зависимости от типа конструкции выделяют несколько разновидностей систем рулевого управления.

  • Реечная. Является самым распространенным типом. Энергия с руля на колеса передается с помощью специальной рейки, которая расположена в поперечной плоскости по отношению к раме и кузову транспортного средства (отсюда и название). Это очень простая, но в то же время чрезвычайно эффективная конструкция, обеспечивающая хорошую передачу поворотного усилия. Имеет ряд недостатков, главный из которых – чувствительность к ударам, возникающим из-за неровностей дорожного покрытия. По этой причине плохо подходит для эксплуатации во время передвижения по пересеченной местности.
  • Червячная. Как понятно из названия, этот тип системы использует червячную передачу. Она представляет собой совокупность вала с нанесенными на него канавками и зубчатой шестерни. Зубцы последней входят в канавки вала. Таким образом, при повороте вала поворачивается и шестерня. Червяная конструкция имеет целый ряд плюсов – она менее чувствительна к ударам, в отличие от реечной, самостоятельно тормозит поворот, что избавляет автомобилиста от постоянного контроля руля. Главный недостаток этой разновидности – низкий КПД.
  • Винтовая. Напоминает червячную. Однако вместо вала и шестерни в данном случае используются винт и рейка с винтовой резьбой. При этом полости между деталями заполнены шариками, напоминающими подшипниковыми. В общих чертах принцип действия этой конструкции напоминает схему работы червячной передачи. Однако она имеет ряд преимуществ по сравнению с последней. Основное из них – более высокий КПД. В качестве недостатка подобной конструкции можно назвать ее относительную сложность – в случае износа одного из шариков замену ему придется подбирать точно по диаметру, а это удается не всегда с первого раза. В противном случае возникнет повышенное трение и механизм не будет нормально функционировать. Чаще всего устанавливается на большегрузные автомобили, хотя иногда встречается и на легковых.

В зависимости от наличия усиления системы делят на 4 основных разновидности.

  • Без усилителя. В данном случае устройство, делающее поворотное усилие более интенсивным, отсутствует полностью.
  • С гидроусилителем. В подобных системах стоит гидравлический усилитель, который работает за счет жидкости под давлением. Является самой распространенной на сегодняшний день разновидностью.
  • С электроусилителем. Поворотное усилие делается более интенсивным благодаря электрическим двигателям, которые питаются от бортовой электросети транспортного средства.
  • Гибридные схемы. Как правило, сочетают в себе гидравлическое и электрическое усиление.

В зависимости от наличия дополнительных систем узел делят на следующие разновидности.

  • AFS (или с активным рулевым управлением). Суть системы в том, что она подразумевает наличие датчика, который передает информацию о передаточном усилии на ЭБУ. После обработки этих сведений блок управления или увеличивает, или уменьшает усилие в автоматическом режиме. В конструкции присутствует планетарный редуктор.
  • С динамическим управлением. Принцип работы аналогичен AFS, но вместо планетарного редуктора в данном случае используются электрические двигатели, которые и отвечают за увеличение усилия, передаваемого на колеса.
  • С адаптивным управлением. Суть системы в том, что руль не имеет плотной связи с колесами. К нему подключен датчик, связанный с ЭБУ. При повороте он отправляет на блок соответствующий сигнал, а тот, в свою очередь, заставляет поворачиваться колеса. ЭБУ при этом в автоматическом режиме на основе показаний датчиков определяет, какое усилие необходимо применить для выполнения поворота.

Неисправности рулевого управления

О том, что с рулевым управлением проблемы, может свидетельствовать один из следующих «симптомов»:

  • увеличение люфта (то есть свободного хода) руля, из-за чего управлять машиной становится сложнее;
  • сильное сопротивление рулевого колеса при вращении;
  • заедание или клин руля;
  • стук, другие посторонние звуки при выполнении поворота;
  • вытекание масла из картера системы.

Также о проблемах может говорить уменьшенный угол поворота колес при полном повороте руля.

Чаще всего встречаются следующие неисправности.

  • Появление зазоров в шарнирных креплениях тяги или нарушение зацепления червячной передачи. Такая проблема вызывает увеличенный ход руля. Диагностируется наблюдением за работой механизма во время поворота. «Лечится» неисправность заменой шарнира или корректной настройкой червячной передачи.
  • Износ. Чаще всего изнашиваются втулки или ось маятникового рычага, в результате чего при повороте начинают появляться посторонние звуки (чаще всего – характерный стук). Иногда помогает затягивание оси рычага имеющейся гайкой, но в большинстве случаев требуется замена изношенных компонентов.
  • Деформация рулевых тяг. Вызывает усиление сопротивления руля при выполнении поворота. Решается проблема заменой тяг на новые или их выпрямлением до исходной формы.
  • Недостаток масла в картере. Также вызывает более тугой проворот руля. Обычно вызывается износом сальников, в результате чего масло начинает подтекать. Решается проблема заменой этих деталей, а также восполнением потерянного масла путем дозаправки системы.
  • Обрыв привода насоса гидроусилителя. Приводит к тому, что поворот осуществляется без усиления и руль становится очень тугим. Устраняется путем замены приводного ремня.

Следует отметить, что проблемы с поворотом могут быть вызваны не рулевой системой, а некорректной балансировкой колес или недостаточным давлением воздуха в шинах.

Чтобы избежать проблем с системой рулевого управления, необходим ее периодический осмотр. Особенно это касается гидроусилителя – он является одним из самых «капризных» элементов. Если своевременно устранять мелкие неприятности, более серьезных поломок не возникнет. А значит, не возникнет и проблем при эксплуатации транспортного средства.

Источник http://https://alanspb.ru/drugoe/ustrojstvo-avtomobilya-pod-kapotom.html
Источник http://https://auto-dig.ru/dlya-chego-prednaznacheny-mehanizmy-upravleniya-avtomobilya/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *