Система освещения автомобиля: устройство и приборы

Система освещения автомобиля: устройство и приборы

Как появился свет на автомобилях

Первым источником автомобильного света стал газ ацетилен – использовать его для освещения дороги в 1896 году предложил летчик и авиаконструктор Луи Блерио. Запуск ацетиленовых фар – целый ритуал. Сначала требуется открыть краник ацетиленового генератора, чтобы вода закапала на карбид кальция, который находится на дне «бочонка». При взаимодействии карбида с водой образуется ацетилен, который по резиновым трубкам поступает к керамической горелке, что находится в фокусе отражателя. Теперь шофер должен открыть стекло фары, чиркнуть спичкой — и пожалуйста, в светлый путь. Но максимум через четыре часа придется остановиться – для того, чтобы вновь открыть фару, вычистить ее от копоти и заправить генератор новой порцией карбида и воды. Однако светили карбидные фары на славу. Например, созданные в 1908 году Вестфальской металлопромышленной компанией (так в то время называлась Hella) ацетиленовые фары освещали до 300 метров пути! Столь высокого результата удалось достичь благодаря использованию линз и параболических рефлекторов. Первая автомобильная лампа накаливания была запатентована еще в 1899 году французской фирмой Bassee & Michel. Но вплоть до 1910 года лампы с угольной нитью накаливания были ненадежными, очень неэкономичными и требовали тяжелых батарей увеличенного размера, которые к тому же зависели от станций подзарядки: автомобильных генераторов подходящей мощности еще не существовало. И тут произошел переворот в «осветительных» технологиях – нити накаливания стали делать из тугоплавкого вольфрама (температура плавления 3410°С), который не «выгорал». Первым серийным автомобилем с электрическим светом (а еще – с электрическим стартером и зажиганием) стал Cadillac Model 30 Self Starter («самозапускающийся») 1912 года. Уже через год 37% американских автомобилей имели электроосвещение, а еще через четыре — 99%! С разработкой подходящей динамомашины исчезла и зависимость от зарядных станций.

Проблема ослепления

Впервые проблема ослепления встречных водителей возникла с появлением карбидных фар. Боролись с ней по-разному: перемещали рефлектор, выводя из его фокуса источник света, с той же целью двигали саму горелку, а также ставили на пути света различные шторки, заслонки и жалюзи. А когда в фарах засветилась лампа накаливания, в электрическую цепь при встречных разъездах даже включали добавочные сопротивления, снижавшие накал нити. Но лучшее решение предложила фирма Bosch, в 1919 году создавшая лампу с двумя нитями накаливания — для дальнего и ближнего света. К тому времени уже был придуман рассеиватель — покрытое призматическими линзами стекло фары, отклоняющее свет лампы вниз и по сторонам. С тех пор перед конструкторами стоят две противоположные задачи: максимально осветить дорогу и не допустить ослепления встречных водителей. Увеличить яркость ламп накаливания можно, подняв температуру нити. Но при этом вольфрам начинает интенсивно испаряться. Если внутри лампы вакуум, то атомы вольфрама постепенно оседают на колбе, покрывая ее изнутри темным налетом. Решение проблемы нашли во время Первой мировой войны: с 1915 года лампы стали заполнять смесью аргона и азота. Молекулы газов образуют своеобразный «барьер», препятствующий испарению вольфрама. А следующий шаг был сделан уже в конце 50-х годов: колбу стали наполнять галогенидами, газообразными соединениями йода или брома. Они «связывают» испаряющийся вольфрам и возвращают его на спираль. Первую галогенную лампу для автомобиля представила в 1962 году Hella — «регенерация» нити позволила поднять рабочую температуру с 2500 К до 3200 К, что увеличило светоотдачу в полтора раза, с 15 лм/Вт до 25 лм/Вт. При этом ресурс ламп вырос вдвое, теплоотдача снизилась с 90% до 40%, а размеры стали меньше (галогенный цикл требует близости нити и стеклянной «оболочки»). А главный шаг в решении проблемы ослепления был сделан в середине 50-х — французская фирма Cibie в 1955 году предложила идею асимметричного распределения ближнего света для того, чтобы «пассажирская» обочина освещалась дальше «водительской». И через два года «асимметричный» свет в Европе был узаконен.

Ближний свет Ближний свет Дальний свет

Так работают наиболее распространенные ранее фары
с параболическим отражателем и двухнитевой лампой Н4. Для
предотвращения ослепления встречных водителей нить ближнего света
располагают чуть впереди и выше фокальной точки и экранируют
специальным колпачком внутри колбы, используя только верхнюю половину
отражателя (слева). А нить дальнего света расположена в фокусе и
освещает всю поверхность отражателя (справа).

Фара с однонитиевой лампой Прожекторная фара ближнего света Фара с отражателем эллипсоидной формы

Отражатель «свободной» формы отличается от
параболического. Это отличие не заметно на глаз, но поверхность
рассчитана таким образом, что направляет весь свет от однонитевой лампы
в заданном направлении — чуть вниз, чтобы избежать ослепления.

Впервые «прожекторная» фара ближнего света с
эллипсоидным отражателем появилась в 1986 году на «семерке» BMW. Лучи,
собираясь во втором фокусе отражателя, «подрезаются» экраном, который
обеспечивает заданную светотеневую границу, а затем еще раз
фокусируются линзой.

В 1988 году с помощью компьютера отражателю
эллипсоидной фары удалось придать «свободную» форму — основная часть
лучей проходит над экраном, чем обеспечивается лучшая эффективность.

Эволюция автомобильной фары

На протяжении многих лет фары оставались круглыми — это наиболее простая и дешевая в изготовлении форма параболического отражателя. Но порыв «аэродинамического» ветра сначала «задул» фары в крылья автомобиля (впервые интегрированные фары появились у Pierce-Arrow в 1913 году), а затем превратил круг в прямоугольник (прямоугольными фарами оснащался уже Citroen AMI 6 1961 года). Такие фары были сложнее в производстве, требовали больше подкапотного пространства, но вместе с меньшими вертикальными габаритами имели большую площадь отражателя и увеличенный светопоток. Чтобы заставить такую фару ярко светить при меньших габаритах, следовало придать параболическому отражателю (в прямоугольных фарах — усеченный параболоид) еще большую глубину. А это было чересчур трудоемко. В общем, привычные оптические схемы для дальнейшего развития не годились.

Тогда английская фирма Lucas предложила использовать «гомофокальный» отражатель- комбинацию двух усеченных параболоидов с разными фокусными расстояниями, но с общим фокусом. Одним из первых новинку примерил Austin-Rover Maestro в 1983 году. В том же году фирма Hella представила концептуальную разработку- «трехосные» фары с отражателем эллипсоидной формы (DE, DreiachsEllipsoid). Дело в том, что у эллипсоидного отражателя сразу два фокуса. Лучи, выпущенные галогенной лампой из первого фокуса, собираются во втором, откуда направляются в собирающую линзу. Такой тип фар называют прожекторным. Эффективность «эллипсоидной» фары в режиме ближнего света превосходила «параболическую» на 9% (обычные фары отправляли по назначению лишь 27% света) при диаметре всего в 60 миллиметров. Эти фары предназначались для противотуманного и ближнего света (во втором фокусе размещался экран, создающий асимметричную светотеневую границу). А первым серийным автомобилем с «трехосными» фарами стала «семерка» BMW в конце 1986 года.

Еще через два года эллипсоидные фары стали просто супер! Точнее- Super DE, как называла их Hella. На этот раз профиль отражателя отличался от чисто эллипсоидной формы — он был «свободным» (Free Form), рассчитанным таким образом, чтобы основная часть света проходила над экраном, отвечающим за ближний свет. Эффективность фар возросла до 52%.

Дальнейшее развитие отражателей было бы невозможно без математического моделирования- компьютеры позволяют создавать самые сложные комбинированные рефлекторы. Компьютерное моделирование позволяет увеличить число сегментов до бесконечности так, что они сливаются в единую поверхность «свободной» формы. Взгляните, к примеру, в «глаза» таких машин, как Daewoo Matiz, Hyundai Getz . Их отражатели поделены на сегменты, каждый из которых имеет свой фокус и фокусное расстояние. Каждая «долька» многофокусного отражателя отвечает за освещение «своего» участка дороги. Свет лампы используется почти полностью- за исключением разве что торца лампы, прикрытого колпачком. А рассеиватель, то есть стекло с множеством «встроенных» линз, теперь не нужен — отражатель сам отлично справляется с распределением света и созданием светотеневой границы. Эффективность таких фар, называемых отражающими, близка к прожекторным.

Вам будет интересно  Электромобиль Рено: особенности, модельный ряд, стоимость в 2021 году

Современные отражатели «формируют» из термопластика, алюминия, магния и термосета (металлизированного пластика), а накрывают фары не стеклами, а поликарбонатом. Впервые пластиковый рассеиватель появился в 1993 году на седане Opel Omega- это позволило снизить массу фары почти на килограмм! Но зато поликарбонатные «стекла» гораздо хуже сопротивляются истиранию, нежели стекла настоящие. Поэтому щеточных очистителей фар, которые еще в 1971 году предложил Saab, больше не делают…

Прожекторный тип фары Прожекторный тип фары

Прожекторный тип фары. Здесь показан вариант «биксенон» – переключение с дальнего света на ближний осуществляется перемещением экрана, управляемого соленоидом. Если экрана нет, то прожектор, как правило, работает в режиме ближнего света. Место газоразрядной лампы может занимать «галогенка».

Ксеноновая фара Ксеноновая фара

Так выглядит газоразрядная ксеноновая фара. Поскольку «ксенон» светит очень ярко, таким фарам положено обязательно иметь механизм автоматической регулировки угла наклона и омыватели.

Ксенон и светодиоды

Вековое господство лампы накаливания близится к концу. Достойно «завершить карьеру» ей помогают благородные газы криптон и ксенон. Последний считается одним из лучших наполнителей для ламп накаливания- с ксеноном можно поднять температуру нити вплотную к точке плавлению вольфрама и приблизить свет по спектру свечения к солнечному. Но наполненные ксеноном обычные лампы накаливания- это одно. А «ксенон» с ярким голубым свечением, который применяют на дорогих автомобилях,- это принципиально другое. В ксеноновых газоразрядных лампах светится не раскаленная нить, а сам газ- вернее, электрическая дуга, которая возникает между электродами при газовом разряде при подаче высоковольтного напряжения.

Впервые такие лампы (Bosch Litronic) были установлены на серийном BMW 750iL в 1991 году. Газоразрядный «ксенон» на голову эффективнее самых совершенных ламп накаливания- на бесполезный нагрев здесь расходуется не 40% электроэнергии, а всего 7—8%. Соответственно, газоразрядные лампы потребляют меньше энергии (35 Вт против 55 Вт у галогенных) и светят при этом вдвое ярче (3200 лм против 1500 лм). А поскольку нити нет, то и перегорать нечему- ксеноновые газоразрядные лампы служат гораздо дольше обычных. Но устроены газоразрядные лампы сложнее.

Главная задача- зажечь газовый разряд. Для этого из 12 «постоянных» вольт бортовой сети нужно получить короткий импульс из 25 киловольт- причем переменного тока, с частотой до 400 Гц! Для этого служит специальный модуль зажигания. Когда лампа зажглась (для разогрева требуется некоторое время), электроника снижает напряжение до 85 вольт, достаточных для поддержания разряда. Сложность конструкции и инерция при зажигании ограничили первоначальное применение газоразрядных ламп режимом ближнего света. Дальний светил по старинке- «галогенкой». Объединить ближний и дальний свет в одной фаре конструкторы смогли через шесть лет, причем существует два способа получить «биксенон». Если используется прожекторная фара (как та, что придумала Hella), то переключение режимов света осуществляется экраном, находящимся во втором фокусе эллипсоидного отражателя: в режиме ближнего света он отсекает часть лучей. При дальнем экран прячется и не препятствует световому потоку. А в отражающем типе фар «двойное действие» газоразрядной лампы обеспечивается взаимным перемещением рефлектора и источника света. В итоге вслед за фокусным расстоянием изменяется и светораспределение. Но по данным французской фирмы Valeo, применив отдельные газоразрядные лампы для ближнего и дальнего света, можно достичь на 40% лучшей освещенности, чем у «биксенона». Правда, модулей зажигания требуется уже не два, а четыре- такие фары имеет дорогой Volkswagen Phaeton W12.

Однако будущее газоразрядных ламп вовсе не такое яркое, как излучаемый ими свет. Наибольший успех специалисты прочат светодиодам. Светодиод- это полупроводниковый прибор, излучающий свет при прохождении тока. До начала 90-х их автомобильное применение ограничивалось индикацией- уж слишком низкой была светоотдача. Однако уже в 1992 году Hella оснастила «трешку» BMW Cabrio центральным стоп-сигналом на основе светодиодов, и сегодня они все шире используются в задних фонарях в качестве «габаритов» и стоп-сигналов. Светодиоды срабатывают на 0,2 секунды быстрее традиционных лампочек, тратят меньше энергии (для стоп-сигналов- 10 Вт против 21 Вт) и отличаются почти неограниченным сроком службы. Но для того, чтобы заменить лампы светодиодами в фарах головного света, нужно преодолеть ряд препятствий. Во-первых, даже самые лучшие светодиоды по эффективности пока сопоставимы только с галогенными лампами (светоотдача- около 25 люменов на ватт). При этом они дороже и требуют специальной системы охлаждения- ведь это такие же полупроводниковые приборы, как и процессоры компьютеров. Но разработчики уверяют, что к 2008 году светоотдача диодов достигнет уже 70 лм/Вт (у нынешнего «ксенона»- 90 лм/Вт). Так что первые серийные светодиодные фары могут появиться в 2010 году. А пока полупроводникам поручают второстепенные функции- например, постоянный «дневной свет», как это сделала Hella, расположив в каждой фаре Audi A8 W12 по пять светодиодов.

Адаптивный свет

Попытки повернуть фары автомобиля вслед за рулем люди начали предпринимать сразу после появления самих фар. Ведь это удобно- освещать ту часть дороги, куда ты едешь. Однако механическая связь фар и руля не позволяла соотносить угол поворота лучей со скоростью движения, и правила начала прошлого века «адаптивный» свет просто запрещали. Попытку возродить оригинальную идею осуществила фирма Cibie. В 1967 французы представили первый механизм динамической регулировки угла наклона фар, а через год на Citroen DS начали ставить поворотные фары дальнего света.

Теперь идея поворотного освещения возрождается- на новом, «электронном», уровне. Самое простое решение- дополнительная «боковая» лампочка, которая загорается при повороте руля или включенном «поворотнике» на скорости до 70 км/ч. Подобные фары имеют, к примеру, Audi A8 (первое применение) и Porsche Cayenne. Следующая ступень- действительно поворотные фары. В них биксеноновый прожектор с учетом скорости движения, угла поворота руля и угловой скорости автомобиля вокруг вертикальной оси («датчик поворота») поворачивается вслед за рулем в пределах 22°- на 15° наружу и на 7° внутрь. Такими фарами оснащаются и BMW, и Mercedes, и Lexus, и даже Opel Astra.

Третий вариант «адаптивного» света- комбинированный. На высоких скоростях активен только поворотный прожектор, а в медленных поворотах или при маневрировании «подключается» статическое освещение (оно имеет больший угол охвата- до 90°). Такими фарами оснащен Opel Signum. Но, пожалуй, самая интересная из разработок- это VARILIS: система, которую Hella разрабатывает вместе с несколькими автопроизводителями. Сокращение расшифровывается как Variable Intelligent lighting system. Одна из вариаций- система VarioX, которая позволяет фаре работать в пяти режимах света. Для этого в «ксеноновом» прожекторе вместо экрана, включающего ближний свет, находится цилиндр сложной формы. Смена режимов света происходит при вращении цилиндра. Так, например, в городе фары светят близко, но широко, а на трассе ближний свет немного изменяет форму пучка — для большей дальнобойности. А чуть позже европейские правила позволят связать фары с системой GPS. Одной из первых такую разработку представила BMW в 2001 году. Вспомните концепт-кар X-Coupe с асимметричным дизайном. Фары у него поворачивались по команде GPS-навигатора с учетом скорости движения, угла поворота руля и бокового ускорения. А еще навигационная система позволит «предугадывать» повороты и давать команду на автоматическое изменение светораспределения, скажем, при пересечении английской границы- ведь система VarioX позволяет и это!

Комбинированная система адаптивного света Работа адаптивного света Работа адаптивного света

Комбинированный «адаптивный» свет (Opel Signum)
1) Поворотный «биксеноновый» модуль
2) Статический боковой свет
4) Модуль, управляющий поворотом прожектора

Пяти режимная система адаптивного света

Перспективная система VarioX от фирмы Hella работает
в пяти режимах (слева). Для этого экран, обеспечивающий ближний свет,
заменен цилиндром «свободной» формы. Каждая его образующая (на рисунке
показаны разными цветами) соответствует конкретной схеме
светораспределения. Автоматическим переключением режимов света заведует
шаговый электромотор. Вверху – пример городского освещения в
сравнении с традиционным.

Вам будет интересно  Можно ли ставить светодиодные лампы в габариты и фары автомобиля: полная инфорация о светодиодах

Америка-Европа

Подход к системам освещения в Старом Свете и за океаном различается кардинально. Начнем с того, что американские законы вплоть до 1975 года запрещали использование фар не круглой формы и галогенных ламп! Причем в Штатах лампа и фара были объединены в одно целое- лампы-фары за океаном использовали с 1939 года. Преимущество у таких приборов было одно- герметичность лампы-фары позволяла покрывать поверхность рефлектора серебром, отражающая способность которого достигает 90% (против 60% у распространенных в те времена хромированных рефлекторов). Но менять лампу-фару, естественно, приходилось целиком. А главное отличие- в Европе с 1957 года принято асимметричное светораспределение с лучшим освещением «пассажирской» обочины и с четкой светотеневой границей. Но в Америке использование фар с границей света и тени разрешили только с 1997 года. Разрешили, но не потребовали! Свет «американских» фар распределяется почти симметрично, вовсю ослепляя встречных водителей. К тому же американцы регулируют фары только по вертикали. А еще в США и Канаде отсутствует единый порядок сертификации приборов освещения. Каждый производитель лишь гарантирует соответствие своих фар федеральному стандарту по безопасности движения транспортных средств (FMVSS), а подтверждать это приходится, например, в случае аварии по вине световых приборов. Предполагается, что официально импортируемые из США автомобили проходят проверку на соответствие европейским нормам. «Американские» фары маркируются аббревиатурой DOT (Department Of Transport, Министерство транспорта), а «европейские» — буквой «Е» в кружочке с цифрой-кодом страны, где фара одобрена для использования (Е1 — Германия, Е2 — Франция, и т.д.).

Конструкция и маркировка

Автомобильные лампы отличаются, как правило, конструкцией цоколя и светоотдачей. Например, в двухфарных системах чаще всего используются лампы Н4- с двумя нитями накаливания, для дальнего и для ближнего света. Их световой поток- 1650/1000 лм. В «противотуманках» светят лампы Н8- однонитевые, со светопотоком в 800 лм. Другие однонитевые лампы Н9 и НВ3 могут обеспечивать только дальний свет (светопоток 2100 и 1860 лм соответственно). А «универсальные» однонитевые лампы Н7 и Н11 могут использоваться и для ближнего, и для дальнего света- в зависимости от того, в каком отражателе они установлены. И как всегда, качество лампы зависит от конкретного производителя, оборудования, концентрации и типов газов (например, лампы Н7 и Н9 иногда заполняют не галогенами, а ксеноном). У газоразрядного «ксенона» другие обозначения. Первыми ксеноновыми лампами были приборы с индексами D1R и D1S- они были объединены с модулем зажигания. А за индексами D2R и D2S скрываются газоразрядные лампы второго поколения (R- для «отражающей» оптической схемы, S- для прожекторной).

Системы освещения автомобиля

Приборы освещения автомобиля предназначены для обеспечения безопасности движения и удобства эксплуатации его в любое время суток и при различных условиях дорожного и внедорожного движения, а также на стоянках и остановках.

К приборам освещения относятся фары, габаритные передние и задние фонари, фонари освещения номерного знака, фонари освещения салона и багажного отделения, лампочки освещения моторного отсека и вещевого ящика, а также лампочки подсветки панели управления, различных шкал и др.

1. Адаптивные системы освещения

Попытки повернуть фары автомобиля вслед за рулевым колесом автомобилестроители начали предпринимать сразу после появления самих фар. Однако механическая связь фар и рулевого колеса не позволяла соотносить угол поворота лучей со скоростью движения.

Теперь идея поворотного освещения возрождается на новом, электронном уровне. Самое простое решение — дополнительная боковая лампочка, которая загорается при повороте рулевого колеса или включенном указателе поворотов на скорости до 70 км/ч. Подобные фары имеют, к примеру, Audi A8 (первое применение) и Porsche Cayenne. Следующая ступень — поворотные фары. В них фара с учетом скорости движения, угла поворота рулевого колеса и угловой скорости автомобиля вокруг вертикальной оси (датчик поворота) поворачивается вслед за рулевым колесом в пределах 15…22° наружу и на 7° внутрь. Такими фарами оснащаются BMW,

Mercedes, Lexus, Opel Astra. Третий вариант адаптивного света — комбинированный. На высоких скоростях активна только поворотная фара, а в медленных поворотах или при маневрировании подключается статическое освещение (оно имеет больший угол охвата — до 90°). Такими фарами оснащен Opel Signum.

Примером адаптивной системы освещения является система освещения Adaptive Front-Lighting System (AFL), позволяющая приспосабливать направление света фар к дороге. Эта система сочетает динамическое управление фарами со статическим управлением боковым светом на перекрестках и в узких извилистых проездах. Освещение дороги при ее использовании захватывает значительно больший угол, чем при применении обычной системы (рис. 1).

Освещение дороги адаптивной системой

Рис. 1. Освещение дороги с обычной (а) системой и адаптивной (б) системой

На магистрали такие фары могут поворачиваться в сторону виража на угол до 15°, в зависимости от скорости автомобиля и угла поворота рулевого колеса. При этом левый и правый световые пучки поворачиваются на разные углы (рис. 2).

Углы поворота фар адаптивной системы при повороте

Рис. 2. Углы поворота фар адаптивной системы при повороте налево (а) и направо (б)

Исполнительным механизмом управляет контроллер, который анализирует скорость автомобиля и угол поворота рулевого колеса (рис. 3).

Адаптивная фара

Рис. 3. Адаптивная фара: 1 — оптический элемент ближнего/дальнего света; 2 — актуатор; 3 — червячный редуктор; 4 — электродвигатель; 5 — лампа; 6 — механизм поворота оптического элемента

На скорости до 40 км/ч при проезде перекрестков и узких проездов задействуется дополнительная фара. Она включается при включении указателя поворота и с началом поворота рулевого колеса.

Примером адаптивного (бокового) освещения может служить статическое освещение с применением светодиодов в автомобилях Audi A8 (рис. 4). Для этой системы в фаре установлен рефлектор с четырьмя светодиодами, которые включаются в дополнение к ближнему свету.

Адаптивное статическое боковое освещение

Рис. 4. Адаптивное статическое боковое освещение: а — адаптивное освещение не включено; б — адаптивное освещение включено

Для включения дополнительных светодиодов необходимым условием является работа указателя поворота при скорости не более 40 км/ч или поворот рулевого колеса на достаточно большой угол при скорости не более 70 км/ч.

2. Системы отключения дальнего света и коррекции света фар

В целях недопустимости ослепления встречных водителей легковые автомобили могут оборудоваться автоматической системой отключения дальнего света. Распознавание дорожной обстановки впереди автомобиля осуществляется видеокамерой дальнего света, расположенной в основании внутреннего зеркала заднего вида, жестко закрепленного на лобовом стекле.

Система обеспечивает водителю лучшую видимость в темное время суток, так как дальний свет всегда остается включенным, если дорожная обстановка и условия движения это допускают (рис. 5, а). Если камера системы распознает движущийся навстречу или впереди идущий автомобиль, дальний свет своевременно отключается, чтобы не ослеплять участников дорожного движения (рис. 50, б). При покидании распознанным автомобилем зоны обнаружения системы дальний свет автоматически включается (рис. 50, в).

Принцип работы автоматической системы отключения дальнего света в случае движущегося навстречу автомобиля

Рис. 5. Принцип работы автоматической системы отключения дальнего света в случае движущегося навстречу автомобиля: а, б — дальний свет включен; в — дальний свет выключен

По освещенности дороги система распознает движение по населенным пунктам и городам, отключая дальний свет. После выезда из населенного пункта или города дальний свет снова автоматически включается. Программное обеспечение системы способно распознать густой туман, что также приводит к отключению дальнего света.

Более совершенной является автоматическая коррекция дальности света фар. Такая система плавно переключает ближний и дальний свет фар в зависимости от фактических условий окружающей среды и дорожной обстановки. Специальная видеокамера в БУ распознает встречный и обгоняющий транспорт. В своей работе функция автоматической коррекции дальности света фар учитывает также данные навигации, получая от нее информацию о расположенных перед автомобилем участках маршрута.

Если система распознает движущийся во встречном направлении автомобиль, то дальность света фар уменьшается, пока они полностью не переключатся в режим ближнего света (рис. 6). Таким образом, исключается ослепление водителей встречного транспорта. После того как встречный автомобиль проедет, если только дорожная обстановка это допускает, дальность света фар снова увеличивается до режима дальнего света.

Вам будет интересно  Электронная система управления двигателем (ЭСУД) от А до Я: расшифровка, диагностика и распиновка

Освещение дороги при наличии встречного автомобиля при автоматической коррекции дальности света фар

Рис. 6. Освещение дороги при наличии встречного автомобиля при автоматической коррекции дальности света фар

От навигационной системы поступают также данные о приближении к перекресткам. В таком случае включается дополнительная подсветка перекрестков (рис. 7).

Освещение дороги при наличии перекрестка с дополнительной подсветкой

Рис. 7. Освещение дороги при наличии перекрестка без дополнительной подсветки (а) и с дополнительной подсветкой (б)

Одной из современных систем освещения является активный свет, применяемый, например, у автомобилей Touareg. Главная его особенность заключается в том, что он не ослепляет водителей встречных автомобилей. Ксеноновые прожекторные фары позволяют ездить с постоянно включенным дальним светом. На ближний свет фары переключатся автоматически, как только камера, установленная под лобовым стеклом (она же следит за разметкой), заметит встречный или попутный транспорт. В фарах есть специальная шторка с электроприводом, которая позволяет перекрыть световой пучок и сформировать нужную светотеневую границу (рис. 8).

Освещение дороги с активным светом

Рис. 8. Освещение дороги с активным светом

Электронная система сама следит за дорогой и передвигает шторку таким образом, чтобы встречная машина всегда находилась в тени. Система автоматически следит сразу за несколькими автомобилями, поэтому водитель может спокойно ехать по загородной трассе с включенным дальним светом, что повышает безопасность движения. Время быстродействия системы 350 мс. Работа и взаимодействие систем безопасности происходит посредством новой более быстродейственной шины FlexRay (10 Мбит/c).

3. Системы освещения с адаптивной световой границей

Суть такой системы заключается в том, что за встречным (а заодно и попутным) потоком следит видеокамера, установленная под потолком салона. Вторая часть системы расположена в фаре автомобиля. Подвижные отражатели, которыми управляет быстродействующий шаговый двигатель, за миллисекунды изменят ширину и направленность светового потока. При этом изменяются углы наклона и ширина светового пучка в зависимости от реальной дорожной обстановки. Луч света фар попадет лишь на асфальт, но не в глаза встречному водителю и не на зеркало едущему в попутном направлении (рис. 9). Видеокамера, обнаружив потенциальное препятствие, дает команду о его подсветке.

Направление луча света фар системы освещения с адаптивной световой границей

Рис. 9. Направление луча света фар системы освещения с адаптивной световой границей

4. Автоматическое регулирование наклона фары

Чтобы исключить ослепление встречных водителей фарами автомобиля, современные легковые автомобили оснащаются фарами с устройством автоматического регулирования наклона фар (рис. 10).

БУ автоматического регулирования наклона фар определяет посредством двух сенсоров на передней и задней осях автомобиля, установленных на одной стороне, степень загрузки автомобиля. Эта информация передается в БУ, который изменяет напряжение в серводвигателях. Последние, автоматически поворачиваясь, в зависимости от нагрузки на автомобиль, обеспечивают оптимальное освещение дороги.

Схема системы автоматического регулирования наклона фар

Рис. 10. Схема системы автоматического регулирования наклона фар: а — автомобиль не нагружен; б — автомобиль нагружен; 1 — серводвигатель автоматического наклона фар; 2 — блок управления автоматического угла наклона фар; 3, 4 — сенсоры загрузки

5. Система ночного видения

Система ночного видения предназначена для предоставления водителю информации об условиях движения в темное время суток. Система позволяет распознавать всевозможные препятствия, участников дорожного движения, пешеходов на неосвещенной дороге, а также дальнейшую траекторию трассы.

Система помогает снять нагрузку с водителя в условиях плохой видимости и тем самым обеспечивает повышение безопасности движения. В настоящее время система ночного видения устанавливается в качестве опции на легковые автомобили премиум-класса. Принцип действия системы основан на фиксации инфракрасного (теплового) излучения объектов специальной камерой и его проецировании на дисплей в виде серого масштабного образа.

Различают два типа систем ночного видения: пассивные и активные.

Пассивные системы ночного видения захватывают тепловое излучение, исходящее от объектов, используя тепловую камеру (тепловизор). Любые объекты (живые и неживые) обладают определенной температурой и излучают тепло. В зависимости от температуры, интенсивность излучения бывает разная. Благодаря наличию тепловизионных приборов оно преобразуется в видимое нашему глазу изображение. Тепловая камера фиксирует инфракрасное излучение объектов на расстоянии до 300 м. Они имеют высокий уровень контрастности и низкое разрешение изображения.

Пассивные системы ночного видения:

  • Night Vision Assistant от Audi;
  • Night Vision от BMW;
  • Night Vision от General Motors;
  • Intelligent Night Vision System от Honda.

Активные системы ночного ведения (рис. 11) используют дополнительный источник инфракрасного света, устанавливаемый на автомобиль. Они характеризуются высоким разрешением изображения и дальностью охвата порядка 150…250 м.

Известными активными системами ночного видения являются:

  • Night View Assist от Mercedes-Benz;
  • Night View от Toyota.

В качестве фильтра применяется специальное стекло, состоящее из тончайших слоев таких материалов, как MgF2, Na3AlF6, ZnS, TiO2, Ta2O5, Nb2O5. Проходя через множество слоев, световые волны разной длины изменяют фазу и на выходе складываются таким образом, что либо гасят, либо усиливают интенсивность.

Компоновка системы освещения с инфракрасным излучателем

Рис. 11. Компоновка системы освещения с инфракрасным излучателем

В итоге фильтр пропускает свет строго с длины волны 780 нм. Фара с таким стеклом выглядит выключенной, но только для глаза. Встречные водители будут видеть только ближний свет, в то время как ИК-излучение воспринимает «третий глаз» — видеокамера, установленная за зеркалом в салоне. Полученная картинка проходит цифровую обработку, которая повышает четкость изображения. Затем ее выводят на отдельный монитор или непосредственно на лобовое стекло.

Система способна не только отображать объекты на дисплее приборного щитка, но и вести селекцию. Например, когда электроника определяет, что перед машиной человек и он находится вне траектории движения автомобиля, его силуэт отмечается желтой рамкой (рис. 57). Как только система поймет, что человек на пути автомобиля, его фигура станет очерчиваться красной рамкой, при этом раздастся предупреждающий звуковой сигнал.

Селекция отображаемых объектов

Рис. 12. Селекция отображаемых объектов

Инфракрасный прожектор освещает дорогу на 300 м. Адаптивное и инфракрасное освещение (рис. 13) применяется в автомобилях Audi А8, BMW 5-й серии и др. Фары таких автомобилей, оборудованные ксеноновыми лампами, для улучшения освещения и исключения ослепления встречных водителей приспосабливаются к самым разным условиям движения и помогают водителю лучше видеть дорогу.

Освещение дороги с адаптивной и инфракрасной системой

Рис. 13. Освещение дороги с адаптивной и инфракрасной системой: 1 — базовый свет; 2 — городской свет («ближний»); 3 — противотуманное освещение; 4 — автомагистральный свет; 5 — освещение кривых на магистрали; 6 — освещение поворотов

На скорости автомобиля до 50 км/ч при автоматическом режиме включается «городской режим», при этом луч света освещает пространство перед автомобилем относительно недалеко (поз. 2), высвечивая большое пространство вблизи и в левую сторону. С ростом скорости увеличивается и дальность «ближнего света». Начиная со скорости 110 км/ч работает «дальний свет». (Кавычки не случайны — в новой системе традиционное разделение этих понятий теряет смысл.)

Для определения начала поворота установлен чувствительный гироскопический датчик, по срабатыванию которого луч слегка поворачивается в сторону поворота. Если же водитель на небольшой скорости (до 70 км/ч) включил сигнал поворота или система зафиксировала резкий маневр рулем, то включается боковой луч, позволяющий увидеть, что делается слева или справа.

При движении автомобиля в тумане автоматически включаются противотуманное освещение (поз. 3). Для того чтобы исключить ослепление встречных водителей, предусмотрено автомагистральное освещение (поз. 4) с инфракрасным излучателем.

6. Сканирующие системы освещения

Датчики, сканирующие пространство перед автомобилем (распознавание образов), уже используются в серийных автомобилях. Примером системы распознавания образов является новый тип сенсорной системы, различающей объекты перед автомобилем (разработана компанией Audi). Новая высокочувствительная система способна формировать трехмерное изображение препятствия перед ТС (рис. 14).

Сканирующая система освещения

Рис. 14. Сканирующая система освещения

В основе технологии — источник модулированного инфракрасного излучения и датчик (он размещен позади лобового стекла на уровне зеркала заднего вида), сделанный из новых фоточувствительных полупроводниковых элементов, известных как фотонные смешивающие устройства (Photonic Mixer Devices, PMD). Эти устройства способны обрабатывать сигналы, возвращенные от множества точек предмета одновременно. По строению похожи на обычные приборы с зарядовой связью (так называемые ПЗС-матрицы), применяющиеся в видео- и фотокамерах. Они используют различие во времени, которое требуется лучам, чтобы вернуться от различных объектов сцены к каждому из чувствительных элементов матрицы PMD.

Для вычисления объемного изображения система сравнивает сигнал от каждого пикселя матрицы с опорным модулированным сигналом, поставляемым схемой излучателя, при этом посторонняя инфракрасная засветка (например, от солнца) отделяется от собственного сигнала.

Поле зрения датчика по горизонтали составляет 32°, а по вертикали – 8°. Частота сканирования препятствий – 200 Гц, что позволяет быстро улавливать изменение дорожной обстановки.

https://avtonov.info/sistema-osveshhenija-avtomobilja
https://extxe.com/18652/sistemy-osveshhenija-avtomobilja/